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Single-cell and spatial atlases of spinal cord 
injury in the Tabulae Paralytica

Michael A. Skinnider1,2,3,4,10, Matthieu Gautier1,2,10, Alan Yue Yang Teo1,2, Claudia Kathe1,2, 
Thomas H. Hutson1,2,5, Achilleas Laskaratos1,2, Alexandra de Coucy1,2, Nicola Regazzi1,2, 
Viviana Aureli1,2,6,7, Nicholas D. James1,2, Bernard Schneider1,8, Michael V. Sofroniew9, 
Quentin Barraud1,2, Jocelyne Bloch1,2,6,7, Mark A. Anderson1,2,5,7,11 ✉, Jordan W. Squair1,2,6,11 ✉ & 
Grégoire Courtine1,2,6,7,11 ✉

Here, we introduce the Tabulae Paralytica—a compilation of four atlases of spinal cord 
injury (SCI) comprising a single-nucleus transcriptome atlas of half a million cells,  
a multiome atlas pairing transcriptomic and epigenomic measurements within the 
same nuclei, and two spatial transcriptomic atlases of the injured spinal cord spanning 
four spatial and temporal dimensions. We integrated these atlases into a common 
framework to dissect the molecular logic that governs the responses to injury within 
the spinal cord1. The Tabulae Paralytica uncovered new biological principles that 
dictate the consequences of SCI, including conserved and divergent neuronal 
responses to injury; the priming of specific neuronal subpopulations to upregulate 
circuit-reorganizing programs after injury; an inverse relationship between neuronal 
stress responses and the activation of circuit reorganization programs; the necessity 
of re-establishing a tripartite neuroprotective barrier between immune-privileged 
and extra-neural environments after SCI and a failure to form this barrier in old mice. 
We leveraged the Tabulae Paralytica to develop a rejuvenative gene therapy that 
re-established this tripartite barrier, and restored the natural recovery of walking after 
paralysis in old mice. The Tabulae Paralytica provides a window into the pathobiology 
of SCI, while establishing a framework for integrating multimodal, genome-scale 
measurements in four dimensions to study biology and medicine.

Spinal cord injury (SCI) irreversibly damages neural tissues, leading to 
permanent and devastating loss of neurological functions2,3. Advances 
in management4 and neurotechnologies5–8 have improved survival and 
allow clinicians to address many aspects of neurological dysfunction 
after SCI. However, decades of investigations culminating in large-scale 
clinical trials have yet to identify safe and effective therapies to repair 
the injured spinal cord1,3.

A SCI triggers a cascade of molecular and cellular responses involving 
inflammatory cell infiltration and cytokine release, apoptosis, demy-
elination, excitotoxicity, ischaemia and the formation of a fibrotic scar 
surrounded by an astrocyte border1,2,9–11. Altering the course of this 
cascade to repair the injured spinal cord will require a complete under-
standing of how neural and non-neural cells coordinate the response 
to SCI over time and throughout the lesion microenvironment.

Here we leveraged single-nucleus transcriptomics, multiomics and 
spatial transcriptomics in mice to establish the Tabulae Paralytica, 
or ‘atlases of spinal cord injury’ (Fig. 1a and Supplementary Video 1). 
Together, these atlases, comprising 482,825 individual cells spanning 18 

experimental conditions and 71,499 spatial barcodes mapped onto the 
three-dimensional (3D) architecture of the injured spinal cord, provide 
a window into the pathobiology of SCI. We provide an interactive web 
application to explore these atlases at http://tabulaeparalytica.com.

Design of the snRNA-seq atlas
We optimized single-nucleus RNA sequencing (snRNA-seq) protocols 
for the injured spinal cord (Supplementary Fig. 1), and leveraged these 
protocols to conduct snRNA-seq profiling across a comprehensive set 
of experimental conditions and injury models that aimed to capture 
the multifaceted responses to SCI and how pharmacological interven-
tions may alter these responses (Fig. 1b, Supplementary Figs. 2 and 3 
and Supplementary Table 1).

The pathobiological responses activated in the injured spinal 
cord depend on the severity and mechanism of the initial insult, and 
evolve over the following days, weeks and months3,4. To capture these 
responses, we profiled the spinal cords of uninjured mice and mice  
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at 1, 4, 7, 14, 30 and 60 days after mid-thoracic (T10) crush SCI. Next, 
we devised a progression of crush injury severities that led to mild, 
moderate, severe and complete functional impairments. Finally, we 
profiled the spinal cord following SCI induced by different mechanisms 
of injury, including contusion12,13 and dorsal hemisection14.

In humans, immune responses differ across the lifespan and between 
male and female individuals, with broad implications for disease  
initiation and progression. To evaluate the effect of sex and age on the 
cell-type-specific molecular programs activated by SCI, we profiled 
injured spinal cords from male and female mice, and from young and 
old mice.

Finally, we asked whether single-cell techniques could provide 
insights into the molecular mechanisms of pharmacotherapies for 
SCI. To address this question, we profiled the spinal cords of mice 
treated with three of the most extensively investigated clinical and 
experimental interventions: methylprednisolone, minocycline and 
chondroitinase ABC (ChABC).

Single-nucleus transcriptome atlas of SCI
We exploited this progression of 18 experimental conditions to estab-
lish a single-nucleus atlas of SCI, profiling the spinal cords of mice from 
each condition in biological triplicate by snRNA-seq. After stringent 
quality control, we obtained high-quality transcriptomes for a total 
of 435,099 nuclei from 52 mice (Fig. 1c,d and Supplementary Fig. 4).

To identify both coarse cell types and more granular subtypes, we 
subjected the entire dataset to several rounds of clustering at increas-
ingly fine-grained resolutions. This procedure identified all the major 
cell types of the spinal cord and allowed us to establish a comprehensive 
catalogue of 175 more granular subpopulations. We organized these 
subpopulations into a clustering tree15 that recapitulated the known 
cellular hierarchy of the spinal cord (Fig. 1e and Extended Data Fig. 1).

Coarse clustering identified cells originating from immune, 
astroependymal, vascular, oligodendrocyte and neuronal lineages 

(Supplementary Fig. 5). Subclustering further refined this taxonomy 
(Supplementary Note 1 and Supplementary Figs. 6–11). Within each of 
these lineages, we first explored the evolution of each subpopulation 
over time and with increasing injury severity.

Our snRNA-seq atlas recapitulated the known evolution of the 
immune response over the first 2 months following SCI9. Extensive 
infiltration of peripheral immune cells peaked between 7 and 14 days, 
paralleling the initiation and slow stabilization of microglial acti-
vation (Fig. 2b). The relative proportion of homeostatic microglia 
decreased gradually with injury severity, whereas the proportions 
of chemotaxis-inducing and inflammatory macrophages expanded 
(Supplementary Fig. 6d). These findings complement and extend 
previous single-cell studies of the immune response to SCI over the 
first week postinjury16 (Supplementary Fig. 6e–g).

When an SCI occurs, astrocytes form a barrier that surrounds the 
fibrotic lesion core to protect viable neural tissue from infiltrating 
immune cells10,17–20. The proportion of protoplasmic astrocytes declined 
gradually over the first few days after injury (Supplementary Fig. 7h). 
The extent of this loss correlated with the severity of the injury (Sup-
plementary Fig. 7i,j). By contrast, the reactive astrocyte compartment 
expanded immediately after injury, and persisted into the chronic stage 
(Supplementary Fig. 7k). To further study astrocyte responses, we 
applied tricycle21 to estimate cell-cycle positions and identify actively 
proliferating cells within the astroependymal compartment (Fig. 2d). 
This analysis indicated that astrocytes entered the cell cycle starting 
at 1 day, with peak proliferation observed at 4 days (Fig. 2d). By 7 days, 
astrocytes had largely returned to G1/G0.

The cerebrovasculature comprises an arteriovenous axis of arteries, 
arterioles, capillaries, venules and veins. Together, these vessels form 
the blood–spinal cord barrier that separates the immune-privileged 
spinal cord parenchyma from the extra-neural environment. Our 
snRNA-seq atlas revealed an immediate and severity-dependent dis-
ruption of the cells that form the blood–spinal cord barrier following 
SCI. This disruption encompassed a contraction of the endothelial and 
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pericyte compartments and a concomitant expansion in the proportion 
of vascular lepotomeningeal cells (VLMCs) (Fig. 2f and Supplementary 
Fig. 8d). Moreover, vascular cells showed a severity-dependent increase 
in the expression of genes associated with blood–brain barrier (BBB) 
dysfunction that increased over the first 4 days22 (Supplementary 
Fig. 8e,f). By 7 days, we observed an expanded proportion of arach-
noid barrier cells that are known to establish the cerebrospinal fluid 
(CSF) barrier23,24 (Fig. 2f), and the downregulation of gene programs 
associated with BBB dysfunction22. Immunohistochemical analysis 
of albumin leakage within the spinal cord parenchyma recapitulated 
the early disruption followed by re-establishment of the blood–spinal 
cord barrier inferred from our snRNA-seq data (Supplementary Fig. 9).

The proportion of oligodendrocytes decreased at 1 day, consistent 
with the notion that they are sensitive to the ischaemic environment 
that develops after SCI25. By 4 days, we observed a severity-dependent 
expansion in the proportion of oligodendrocyte precursor cells (OPCs), 
which preceded the reinstatement of a near-normal oligodendrocyte 
compartment by 7 days (Fig. 2h and Supplementary Fig. 10d).

The spinal cord encompasses dozens of anatomically, functionally 
and transcriptionally distinct neuronal subpopulations. The scale of 
our snRNA-seq atlas, which comprised 80,315 single-neuron transcrip-
tomes, allowed us to identify 60 distinct subpopulations of neurons 
(Fig. 2i and Supplementary Fig. 11), which are described in detail in 

Supplementary Note 1. Together, this atlas establishes a single-cell 
taxonomy of the mouse spinal cord, and delineates the effect of injury 
severity and time on the repertoire of cell types within the injured  
spinal cord.

Conserved and divergent neuron responses
A common feature of many insults to the nervous system is that specific 
neuronal subpopulations demonstrate disproportionate susceptibility 
or resilience to the insult. However, whether different neuronal sub-
types within the spinal cord respond differentially to injury remains 
unknown.

To address this possibility, we compared the proportions of neurons 
from each subpopulation between injured and uninjured spinal cords. 
Our snRNA-seq atlas confirmed the expected severity-dependent loss 
of neurons after injury (Fig. 3a and Extended Data Fig. 2a). However, 
there were minimal changes in the relative proportions of each neuronal 
subpopulation, suggesting that spinal cord neurons are, in general, 
equally vulnerable to SCI (Fig. 2j).

The sole exception arose from CSF-contacting neurons23,26,27, which 
showed a unique resilience to SCI (Fig. 3b and Extended Data Fig. 2b). 
This resilience was consistent across every comparison of injured and 
uninjured spinal cords, and became more pronounced with increasingly 
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Fig. 2 | Cell types and subtypes of the uninjured and injured mouse spinal 
cord. a, UMAP visualization of 106,619 immune cells across 18 experimental 
conditions in the snRNA-seq atlas, coloured by cell type. Dendrogram shows 
the bottom four levels of the clustering tree, subset to show immune cell 
subtypes only. b, Proportions of each immune cell subtype across time points. 
c, As in a, but for 25,211 astroependymal cells. d, Cell-cycle stages assigned to 
astrocytes at each time point postinjury (n = 9,301). e, As in a, but for 40,620 

vascular cells. f, Proportions of each vascular cell subtype across time  
points. g, As in a, but for 182,334 oligodendrocytes. h, Proportions of each 
oligodendrocyte subtype across injury severities. i, Left, as in a, but for 80,315 
neurons. Right, UMAP visualization showing expression of canonical dorsal–
ventral and inhibitory–excitatory marker genes. j, Proportions of each neuron 
subtype across injury severities. VI, ventral inhibitory; VE, ventral excitatory; 
DI, dorsal inhibitory; DE, dorsal excitatory.
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severe injuries (Extended Data Fig. 2c,d). Immunohistochemistry 
validated this resilience of CSF-contacting neurons (Extended Data 
Fig. 2e,f).

To characterize the transcriptional programs activated in response 
to injury within CSF-contacting neurons, we performed differential 
expression (DE) analysis (Extended Data Fig. 2g). Relative to other 
neuronal subpopulations, these neurons upregulated genes associated 
with cell adhesion (Cntnap5c), angiogenesis (Rhoj) and acute tissue 
remodelling (Timp3).

By contrast, other neuronal subpopulations showed a homogenous 
degree of vulnerability to SCI. We hypothesized that this homogeneity 
may coincide with the activation of shared transcriptional programs 

in response to injury. Indeed, we found that SCI initially triggered 
molecular responses that were broadly conserved across all neuronal 
subpopulations (Fig. 3c and Extended Data Fig. 3a). These responses 
gradually diverged over the following 2 months, as individual neu-
ronal subpopulations activated increasingly distinct transcriptional 
programs (Fig. 3c).

This homogeneity compelled us to characterize this conserved early 
response of neurons to SCI (Extended Data Fig. 3b–d). We found that 
upregulation of immune response pathways, apoptotic programs and 
mitochondrial membrane disruption were the hallmarks of this response. 
Conversely, neurons downregulated core neuronal functions, including 
neurotransmitter release, ion channel expression and cell adhesion.
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Fig. 3 | Biological principles governing the response to SCI. a, Proportions  
of each major spinal cord cell type across injury severities. b, Susceptible and 
resilient subtypes of spinal cord neurons. Volcano plot shows log2 odds ratios 
comparing neuron proportions between the uninjured spinal cord and each 
injured condition at 7 days postinjury (x axis) versus statistical significance 
(t-test, y axis). c, Left, transcriptome-wide correlations of DE signatures 
between each pair of neuron subtypes, across time points. Right, correlation 
matrices highlighting conserved DE at 1 day and divergent DE at 1 month.  
d, Expression of the circuit reorganization module in local Vsx2-expressing 
neurons at each time point postinjury. e, Left, correlations between basal and 
injury-induced expression of the circuit reorganization module across neuron 
subtypes, at each time point postinjury. Right, scatterplots showing the 
correlation between basal and induced expression across neuron subtypes at 

1 day and 1 month. f, Chronophotography of walking in Vsx2Cre mice after 
spontaneous recovery and in mice that received viral injections of AAV5-CAG- 
FLEX-DTR to induce cell-type-specific neuronal ablation before SCI. g, Walking 
performance of uninjured mice (n = 5), mice after spontaneous recovery (n = 5), 
and in mice with Vsx2ON neuron ablation in the lower thoracic spinal cord (n = 4). 
h, Intensity of the transcriptional perturbation within each neuronal subtype, 
as quantified by Augur, across time points. i, Proportion of neuronal marker 
genes that are up- and downregulated at each time point. j, Proportion of 
neurons assigned an uninjured transcriptional phenotype in mice treated with 
methylprednisolone or minocycline, as compared to neurons from the 
untreated spinal cord. k, Proportions of immune cells in the spinal cord across 
injury models. NS, not significant; PC, principal component.
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We next explored the gradual divergence of neuronal responses 
at later time points. This divergence coincided with the known time-
scale at which circuit reorganization mediates the natural recovery 
of neurological functions after SCI2. We therefore reasoned that this 
divergence might reflect subpopulation-specific circuit reorganiza-
tion. Consistent with this possibility, we identified variable upregula-
tion of genes associated with projection growth and morphogenesis 
across neuronal subpopulations, with maximal upregulation occurring 
between 14 days and 2 months after injury (Fig. 3d, Extended Data 
Fig. 3e and Supplementary Table 2).

Neurons expressing both Vsx2 and Nfib (local Vsx2ON neurons) showed 
the greatest upregulation of genes associated with circuit reorgani-
zation (Extended Data Fig. 3e,f). We found that Vsx2ON neurons also 
showed the highest expression of genes associated with circuit reor-
ganization in the uninjured spinal cord (Extended Data Fig. 3g,h). This 
observation raised the possibility that specific neuronal subpopulations 
may be intrinsically primed to serve as circuit-reorganizing cells after 
injury2. To study this possibility, we correlated the expression of circuit 
reorganization programs in each subpopulation of uninjured neurons 
with the upregulation of the same programs after injury. We identified 
a striking correlation between basal and injury-induced circuit reor-
ganization programs between 14 days and 1 month postinjury, when 
these programs were maximally upregulated (Fig. 3e and Extended 
Data Fig. 3i). This time course coincides precisely with the temporal 
window of opportunity for the circuit reorganization that mediates 
natural recovery after SCI2. Together, these findings suggest that spe-
cific neuronal subpopulations are endowed with the inherent potential 
to upregulate genes associated with circuit reorganization after injury.

In view of the established roles of Vsx2ON neurons located in the  
thoracic28,29 and lumbar8 spinal cords in the recovery of walking after 
SCI in response to regenerative or neuroprosthetic therapies, we  
asked whether these neurons were necessary for the natural recovery  
of walking after incomplete SCI. Consequently, we ablated Vsx2ON  
neurons in the thoracic spinal cord (including both local and project-
ing neurons) 2 weeks before a moderate SCI. Whereas ablating Vsx2ON  
neurons had no effect on walking before injury, this ablation pre-
vented the natural recovery of walking after moderate SCI in these 
mice (Fig. 3f,g, Extended Data Fig. 3j–l and Supplementary Video 2).

Our analyses thus far exposed a temporal continuum between 
early-conserved and late-diverging neuronal responses following SCI. 
We sought to quantify the relative intensity of these time-dependent 
responses. To enable this quantification, we assessed the relative 
degree of transcriptional perturbation within each neuronal subpopu-
lation over the course of recovery after SCI using Augur30,31. Augur is a 
machine-learning framework that quantifies the relative magnitude 
of the transcriptional response within any given cell type to an arbi-
trary perturbation, a procedure we refer to as cell-type prioritization. 
This prioritization revealed a pronounced neuronal response at 1 day 
that decreased in intensity over the subsequent days, and thereafter 
remained constant (Fig. 3h).

On the basis of these observations, we propose a model in which all 
neurons undergo a profound and broadly conserved transcriptional 
response immediately after injury that coincides with a dichotomous 
outcome of survival versus cell death. Over the subsequent weeks, the 
surviving neurons show gradually divergent transcriptional responses 
to injury, whereby only specific subpopulations upregulate genes asso-
ciated with circuit reorganization. The degree of this injury-induced 
upregulation is encoded in the basal transcriptional state of each 
neuronal subpopulation, suggesting that specific subpopulations 
are primed to upregulate circuit-reorganizing genes following injury2.

Surviving neurons remain differentiated
Single-cell studies have shown that neurons in the injured peripheral 
nervous system undergo dedifferentiation and loss of transcriptional 

identity following axonal injury32,33. We asked whether similar biological 
principles dictate neuronal responses in the injured central nervous 
system (CNS).

Contrary to single-cell analyses of peripheral neurons, we failed to 
identify a separate cluster of dedifferentiated neurons within the injured 
spinal cord at any time point (Fig. 2i). We reasoned that DE of neuronal 
marker genes could identify more subtle loss of transcriptional identity. 
However, we found that the vast majority of subpopulation-specific 
marker genes were neither up- nor downregulated across the entire 
time course of SCI (Fig. 3i and Extended Data Fig. 4a,b). This observa-
tion was robust to the statistical threshold used to identify neuronal 
marker genes (Extended Data Fig. 4c,d).

Collectively, these observations raise the possibility that transient 
loss of neuron transcriptional identity after injury may be a mechanism 
by which the peripheral nervous system maintains the distinct capac-
ity to regrow severed nerves34–36. However, the CNS fails to recruit this 
mechanism after injury.

Growth-facilitating molecule expression
Following SCI, neural and non-neural cells express several families of 
molecules that can facilitate or inhibit axon growth and circuit reor-
ganization10,37–40. These molecular pathways have historically been the 
main targets for interventions that aim to promote spinal cord repair1, 
but the identities of the cells that produce these molecules are not well 
characterized. In Supplementary Note 2, we discuss how our snRNA-seq 
atlas can be used as a resource to identify the cell types that produce 
growth-promoting or inhibitory molecules following SCI, and dissect 
cell-type-specific responses to potential therapies, such as ChABC, that 
aim to target these molecules (Supplementary Fig. 12).

Molecular logic of immunomodulation
The earliest therapeutic approaches to SCI sought to inhibit immune 
responses to injury, with the aim of conferring neuroprotection. Pre-
clinical studies suggested neuroprotective actions of methylpredniso-
lone and minocycline, which led to large-scale clinical trials. However, 
these trials failed to demonstrate the effectiveness of these treatments 
to mediate functional recovery41–43.

We asked whether our snRNA-seq atlas could address the disconnect 
between the established immunomodulatory activity of these drugs 
and their failure to ameliorate neurological function. Cell-type prior-
itization30,31 confirmed that both methylprednisolone and minocycline 
triggered a profound transcriptional perturbation of the entire immune 
lineage (Supplementary Fig. 13a,b). However, this immunomodulation 
did not coincide with an increase in the survival of neurons (Supple-
mentary Fig. 13c–e). This failure to protect neurons from cell death 
coincided with the lack of detectable neurological recovery.

Although these agents failed to improve the survival of neurons after 
SCI, we reasoned that they might induce more subtle transcriptional 
changes in the surviving neurons. Specifically, we hypothesized that 
these agents might repress the molecular programs activated by injury 
within neurons, thus promoting a shift towards an uninjured transcrip-
tional phenotype. To test this hypothesis, we trained a machine-learning 
model to classify individual neurons as originating from injured ver-
sus uninjured spinal cords (Supplementary Fig. 13f–h). Applying this 
model to cells from mice treated with methylprednisolone or mino-
cycline revealed a marked increase in the proportion of neurons that 
were classified as uninjured (Fig. 3j). Consistent with this prediction, 
surviving neurons treated with methylprednisolone downregulated 
transcriptional programs associated with innate and adaptive immune 
responses and cellular stress (Supplementary Fig. 13i,j).

Together, these findings indicate that methylprednisolone and 
minocycline modulate the immune responses to SCI, which in turn 
shifts the surviving neurons towards their basal transcriptional states. 
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However, these agents fail to alter the early, dichotomous outcome of 
survival versus cell death, and therefore fail to prevent neuronal death 
or improve neurological recovery.

Sexual dimorphism in the response to SCI
Sexual dimorphism in immune responses underlies differences in the 
prevalence of autoimmune disease between males and females44,45. Con-
sequently, we hypothesized that transcriptional programs activated by 
SCI may also be sexually dimorphic. However, we identified few differ-
ences in cell-type proportions, cell-type-autonomous transcriptional 
programs or neurological outcomes between male and female mice 
(Supplementary Note 3 and Supplementary Fig. 14).

Cellular divergence between injury models
Preclinical studies of SCI require the selection of a relevant paradigm 
from a large repertoire of potential injury models. One important 
difference between these models is whether they explicitly open the 
meninges, which is thought to promote excessive immune cell infiltra-
tion. However, we found that the degree of peripheral immune inva-
sion was broadly conserved across the injury models included in our 
snRNA-seq atlas (Fig. 3k and Supplementary Fig. 15a–c). We validated 
this finding by morphometrically quantifying Cd45-expressing cells, 
finding the number of these to be similar across injury models (Sup-
plementary Fig. 15d,e). These observations suggest that crush and 
contusion injuries dismantle the blood–spinal cord barrier and cause 
extensive peripheral immune invasion that is not contingent on explicit 
meningeal disruption.

A second potential difference between preclinical paradigms is their 
relevance to human injuries. The most common mechanism of spinal 
cord damage in humans occurs through burst fractures and distraction 
injuries that impact the ventral spinal cord46. To understand whether 
our profiled injury models lead to differential perturbations of neu-
rons along the dorsoventral axis, we used cell-type prioritization to 
quantify transcriptional responses in each neuronal subpopulation. 
Compared to crush injury, we found that dorsal hemisection and contu-
sion injuries preferentially perturbed neurons in the dorsal spinal cord 
(Supplementary Fig. 15f), consistent with the direct application of force 
to the dorsal aspect of the spinal cord. Conversely, increasingly severe 
crush injuries induced balanced perturbations in dorsal versus ventral 
neurons (Supplementary Fig. 15g). These differences between rodent 
models of SCI must be considered when selecting an injury model for 
preclinical studies.

Failure of barrier formation in old mice
Ageing causes multifaceted changes in gene expression that culminate 
in dysregulated transcriptional responses to disease and biological 
perturbations, but whose cellular and functional consequences after 
SCI remain poorly understood. We found that the transcriptional dif-
ferences between young and old mice after SCI were nearly as profound 
as those between injured and uninjured mice (Fig. 4a). The magnitude 
of this transcriptional perturbation was mirrored by extensive func-
tional impairments in old mice compared to young mice (Fig. 4b,c, 
Supplementary Fig. 3e, Supplementary Video 3 and Supplementary 
Table 1). We sought to elucidate the mechanisms underlying these 
transcriptional and functional differences.

We first compared the proportions of cell types in the injured spinal  
cords of young and old mice. This comparison identified a markedly 
lower proportion of neurons in the spinal cords of old mice after 
injury compared to young mice, which was counterbalanced by an 
increase in the proportion of immune cells (Fig. 4d and Extended Data 
Fig. 5a,b). These pronounced differences in the cellular composition 
of the spinal cord were not observed in anatomical comparisons of  

uninjured young and old mice (Supplementary Fig. 16a). Anatomical 
assessments confirmed that old mice demonstrated more profound 
disruption of the blood–spinal cord barrier, with increased invasion 
of peripheral immune cells, and ultimately developed larger lesions  
compared to young mice, despite identical mechanisms of injury 
(Fig. 4e and Extended Data Fig. 5c,d). This difference in blood–spinal 
cord barrier function likewise was not observed in comparisons of 
uninjured young and old mice (Supplementary Fig. 16b).

We next asked how age affected the transcriptional responses to 
SCI within individual cell types. Cell-type prioritization30,31 comparing 
cells from old and young mice with SCI revealed abnormal responses 
in infiltrating immune cells from old mice, including dividing myeloid 
progenitors, natural killer cells and T cells (Extended Data Fig. 5e). 
However, Augur also detected abnormal responses within cell types 
involved in the formation of the blood–spinal cord barrier and the 
astrocyte barrier, including extracellular matrix-forming VLMCs, 
capillary endothelial cells and OPCs. Consistent with this observa-
tion, we detected an age-dependent decrease in the proportion of 
Id3-expressing astrocytes, which form the astrocyte lesion border47, 
and of arachnoid barrier cells, which form the CSF barrier (Extended 
Data Fig. 5f,g). Immunohistochemistry for SOX9 and ID3 confirmed 
these findings (Fig. 4f,g). Within the vascular compartment, we identi-
fied an age-dependent upregulation of gene programs associated with 
dysfunction of the BBB and downregulation of the specialized gene 
programs that enable vascular cells to establish the BBB22, after injury 
(Fig. 4h, Extended Data Fig. 5h and Supplementary Table 2).

To dissect the transcriptional programs that are dysregulated in 
old mice, we performed DE analysis48 of all the cell types in the spinal 
cord. In comparisons of old and young injured mice, we observed that 
many genes were DE within just a single cell type (Fig. 4i). Moreover, 
other genes showed opposing patterns of up- and downregulation 
across different cell types (Extended Data Fig. 5i,j). To quantify the 
coordination of the transcriptional responses to SCI across cell types, 
we devised statistical measures that aimed to capture both the vari-
ability of DE and changes in the direction of DE across cell types. These 
quantifications revealed that transcriptional responses to injury were 
profoundly discoordinated across the cell types of the spinal cord in 
old mice, relative to every other experimental comparison involving 
injured young mice (Fig. 4j and Extended Data Fig. 5i,j).

Together, these findings suggest that old mice fail to deploy the 
coordinated, multicellular response to SCI that naturally occurs in 
young mice, although we cannot exclude the possibility that some  
of the observed differences are present at baseline in the unin-
jured spinal cord. Notwithstanding this caveat, our snRNA-seq data  
demonstrates an age-dependent disruption of the cells that estab-
lish three essential neuroprotective barriers between the immune- 
privileged and extra-neural environments of the injured spinal cord: 
(1) the blood–spinal cord barrier; (2) the CSF–spinal cord barrier and 
(3) the border-forming astrocyte barrier (Fig. 4k). This disruption is 
accompanied by a dramatic increase in peripheral immune cell inva-
sion, the uncontrolled expansion of the lesion, the loss of neurons 
adjacent to the injury site and an inability to coordinate the recovery 
of neurological functions.

A multiome atlas of SCI
Our snRNA-seq atlas uncovered the transcriptional programs triggered 
by SCI across the entire repertoire of cells in the spinal cord. However, 
we recognized that this atlas was intrinsically limited in its ability to 
reveal the regulatory mechanisms that underlie these transcriptional 
programs. To overcome this limitation, we compiled the second atlas 
of the Tabulae Paralytica: a multiomic atlas of the injured spinal cord  
(Fig. 5a).

We deployed single-nucleus multiomics to measure both RNA and 
accessible chromatin within the same individual cells, using the assay 
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for transposase-accessible chromatin by sequencing (ATAC-seq). We 
leveraged these methodologies to profile the uninjured and injured 
spinal cords of mice at 7 days and 2 months postinjury. After quality 
control of both modalities49, we obtained a dataset measuring gene 
expression and chromatin accessibility in 47,726 nuclei (Fig. 5b,c and 
Supplementary Fig. 17).

We aimed to link the multiomic atlas to the cellular taxonomy of the 
spinal cord that our snRNA-seq atlas had established. To overcome 
challenges in cell-type annotation within snATAC-seq data, we adapted 
an automated cell-type annotation approach50 to hierarchically assign 
cell types and subtypes to each cell in the multiome atlas on the basis of 
the RNA modality. We validated the accuracy of this approach through 
cross-validation in the snRNA-seq atlas, and established that cell types 

were recovered at similar frequencies in both atlases (Supplementary 
Figs. 18–20).

We then leveraged this taxonomy to call peaks within each cell type 
and subtype at increasingly granular resolutions on the clustering 
tree (Supplementary Fig. 21)49, and identified differentially accessible 
transcriptional factors within each subpopulation (Supplementary 
Figs. 22 and 23)51.

Regulatory logic of barrier formation
Because our snRNA-seq atlas uncovered a number of biological prin-
ciples that dictate the multifaceted responses to SCI in different cell 
types of the spinal cord, we sought to leverage our multiome atlas to 
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decreased direction consistency. k, Schematic overview of the cell types 
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understand the regulatory programs that orchestrate these transcrip-
tional responses.

We first aimed to dissect the gene regulatory programs involved in 
the re-establishment of the tripartite barrier after SCI. Because our 
multiome atlas recapitulated the upregulation of gene programs asso-
ciated with BBB dysfunction that we had observed in the snRNA-seq 
atlas (Fig. 5c), we leveraged the ATAC modality to identify the tran-
scriptional factors that underlie this dysfunction. To exploit the link 
between RNA and ATAC modalities, we correlated the accessibility 
of transcriptional factor binding motifs to the expression of these 
gene programs within the same cell (Supplementary Fig. 24a). Within 
vascular cells, the expression of the BBB dysfunction program22 was 
correlated with the accessibility of transcription factors associated 
with cellular stress and inflammation (Ap1, Junb, Bach1 and Fos52) and 
hypoxia-induced VEGF (vascular endothelial growth factor) stimula-
tion (Ep300), and anticorrelated with the accessibility of transcription 
factors driving cellular proliferation (Foxa2, Foxa3 and Lin54; Fig. 5d 
and Supplementary Fig. 24b).

These responses were mirrored by shared and cell-type-specific 
regulatory programs in the other cellular subpopulations that coor-
dinate the formation of the tripartite barrier (Fig. 5e and Supplemen-
tary Fig. 24c). VLMCs, pericytes and arachnoid barrier cells showed 
decreased accessibility of transcription factors known to modulate the 
permeability of the blood–brain or CSF barriers (Rarg and Hif1), whereas 
arachnoid barrier cells and pericytes showed decreased accessibility 

of transcription factors that govern barrier efflux of metabolites and 
that regulate neuronal activity (Dbp and Tef ). Finally, border-forming 
astrocytes showed increased accessibility of several transcription fac-
tors associated with acute responses to stress or hypoxia53, including 
Junb, Bach1, Fos and Ep300.

Regulatory logic of neuronal responses
Our snRNA-seq atlas established that SCI triggers an immediate tran-
scriptional response that is conserved across all neuronal subpopula-
tions. Conversely, we found that transcriptional responses gradually 
diverged between neuronal subpopulations over time after SCI (Fig. 3c). 
We therefore next sought to understand the regulatory programs that 
govern neuronal responses to SCI as well as their associated functional 
consequences and potential origins.

In the multiome atlas, we observed that the early-conserved tran-
scriptional response was mirrored by conserved regulatory programs 
that involved increased accessibility of transcription factors associated 
with cellular stress (Myc and Nfe2) and apoptosis (Tfap2) (Supplemen-
tary Fig. 25a). To characterize late-diverging regulatory programs, 
we devised a permutation-based statistical approach that evaluated 
variability in transcription factor binding across all subpopulations 
of neurons (Supplementary Fig. 25b). We found that this variability 
originated from divergent regulatory responses within a mixed popula-
tion of ventral excitatory interneurons, containing several subtypes of 
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V0 neurons known to be involved in the control of movement (Fig. 5f 
and Supplementary Fig. 25c). Whereas every other subpopulation 
of neurons showed increased accessibility of transcription factors 
associated with cellular stress responses (Ap1, Stat, Bach1 and Fos), 
this subpopulation of ventral excitatory interneurons instead showed 
decreased accessibility of these transcription factors.

The results from our snRNA-seq atlas revealed that these and other 
ventral excitatory interneurons express genes implicated in circuit 
reorganization at high levels (Extended Data Fig. 3e). The distinctive 
lack of cellular stress responses within these neurons led us to hypoth-
esize that, in general, neurons face an inherent trade-off between the 
expression of cellular stress response programs and transcriptional pro-
grams associated with circuit reorganization. To test this hypothesis, 
we re-examined our snRNA-seq atlas and confirmed the existence of an 
anticorrelation between the expression of programs related to stress 
response versus circuit reorganization (Fig. 5g and Supplementary 
Table 2), which could not be explained by the presence of low-quality 
neurons (Supplementary Fig. 25d–f). These observations suggest a 
model whereby the ability of different neuronal subpopulations to par-
ticipate in circuit reorganization is intrinsically linked to the intensity 
of their response to cellular stress.

Neuronal responses to injury vary markedly across the tree of life, to 
the extent that neurons from primitive vertebrates can demonstrate 
spontaneous regeneration whereas neurons from adult mammals 
fail to regenerate after SCI11. This divergence compelled us to char-
acterize the evolutionary conservation of the genomic regions that 
become differentially accessible following SCI. We used phyloP54 to 
quantify the sequence conservation of these regions, and identified 
profound differences in the evolutionary conservation of differen-
tially accessible peaks within neurons, as compared to glia (Fig. 5h 
and Supplementary Fig. 26a–c). Inspecting these differences more 
closely, we discovered dichotomous patterns of evolutionary con-
servation for peaks that opened versus closed in neurons after SCI 
(Fig. 5i and Supplementary Fig. 26d–f). In the acute phase of SCI, 
neurons showed increased accessibility of evolutionarily conserved 
genomic regions, which was mirrored by decreased accessibility of evo-
lutionarily accelerated genomic regions. These trends were reversed 
2 months after SCI, when evolutionarily accelerated regions showed  
increased accessibility.

Together, these observations reveal an inverse relationship between 
cellular stress responses and the activation of circuit reorganiza-
tion programs across the 80,315 neurons in our snRNA-seq atlas. We 
observe that the upregulation of gene programs associated with circuit 
reorganization coincides temporally with the opening of evolution-
arily accelerated genomic regions, particularly in ventral excitatory  
interneurons.

A spatial transcriptomic atlas of SCI
Interrogation of our snRNA-seq and multiome atlases identified 
cell-type-specific transcriptional and regulatory programs triggered 
by SCI. However, these transcriptional and regulatory programs were 
identified in dissociated cells and, therefore, could not be visualized 
within the complex microenvironment of the injury. To overcome this 
limitation, we resolved these programs within the cytoarchitecture of 
the spinal cord using spatial transcriptomics (Fig. 6a).

We profiled the spinal cords of uninjured and injured mice at 7 days 
and 2 months after SCI, and obtained 33,941 high-quality spatial bar-
codes from 36 transverse sections (Supplementary Fig. 27). To permit 
direct comparison across experimental conditions, we registered all 
36 sections to a common coordinate system8 (Fig. 6b).

The coordinated, multicellular response to SCI establishes a thin 
astrocyte barrier that separates the fibrotic lesion core from sur-
rounding immune-privileged neural tissue. The requirements to pro-
mote neural repair are known to differ between these distinct lesion 

compartments, but the underlying molecular logic remains incom-
pletely understood1,2. We leveraged our spatial atlas to uncover the 
molecular programs that are shared between, or specific to, each of 
these compartments.

To identify molecular differences between lesion compartments, 
we demarcated spatial barcodes corresponding to the fibrotic scar, 
the astrocyte barrier and the adjacent neural tissue (Fig. 6c and Sup-
plementary Fig. 28). We then performed DE analysis to identify genes 
specific to each lesion compartment, and dissected the cellular com-
position of each lesion compartment by deconvolving the cell types 
within each spatial barcode (Fig. 6d–h, Extended Data Figs. 6 and 7, 
Supplementary Fig. 29 and Supplementary Note 4).

To quantify the relative degree of transcriptional perturbation 
throughout the lesion microenvironment, we applied Magellan8. 
Magellan is a machine-learning framework that quantifies the rela-
tive magnitude of the transcriptional response at any given spatial 
locus to an arbitrary perturbation, a procedure we refer to as spatial 
prioritization (Supplementary Fig. 30a). This prioritization recovered 
the profound transcriptional perturbation occurring at the lesion 
core during the first 7 days after injury, with a gradient of decreas-
ing intensity that spread radially throughout the spared but reactive 
neural tissue adjacent to the fibrotic scar (Fig. 6i and Supplementary 
Fig. 30b). Spatial prioritization also captured the contraction of the 
injury border after 2 months of recovery from SCI (Fig. 6j and Sup-
plementary Fig. 30c,d).

These results illustrate how spatial prioritization accurately recov-
ered the two-dimensional (2D) architecture of the evolving injury. 
We therefore asked whether spatial prioritization could also provide 
a resource to identify the molecular programs that elaborate this 
architecture, without any a priori definition of the lesion compart-
ments. To answer this question, we tested for correlation between 
the spatial prioritization scores assigned to each barcode by Magellan 
and the expression of individual genes (Extended Data Fig. 8a–c). As 
anticipated, this approach recovered many of the genes associated 
with canonical lesion compartments, including extracellular matrix 
molecules at the lesion core (Col1a1 and Col13a1) and neuronal genes 
(Nefl and Nefh) in spared but reactive neural tissue (Fig. 6k and Extended 
Data Fig. 8d–f). Similarly, we tested for correlation between the spatial 
prioritizations assigned by Magellan and the average expression of all 
genes associated with a given Gene Ontology (GO) term. This analysis 
recapitulated the multifaceted innate and adaptive immune responses 
within the lesion site (Supplementary Fig. 31).

We then asked whether the spatial transcriptomic atlas could iden-
tify genes whose correlation to the perturbation response differed 
between 7 days and 2 months after SCI. To answer this question, we 
tested for differential correlation between spatial prioritization scores 
and gene expression at 7 days and 2 months post-SCI (Supplemen-
tary Fig. 32a). This analysis highlighted genes (Gfap, Aqp4 and Apod) 
coinciding with the location of the astrocyte barrier, reflecting the 
contraction of this border that takes place between 7 days and 2 months 
after injury (Fig. 6l and Supplementary Fig. 32b). Beyond the astrocyte 
barrier, differential prioritization also pointed to temporal evolution 
in the innate and adaptive immune responses, including immediate 
microglial activation (Wfdc17 and Spp1) and lymphocyte homing 
(Stab1), which contrasted with delayed complement activation (C3) and 
monocyte maturation (Ms4a7) (Fig. 6k and Supplementary Fig. 32b). 
Repeating this differential prioritization at the level of GO terms high-
lighted the spatial evolution of astrocyte differentiation, vascular 
endothelial growth factor production and phagocytosis (Fig. 6l and  
Supplementary Fig. 33).

Spatial prioritization also allowed us to uncover less appreciated 
aspects of the biology of an SCI. For example, we identified chronic 
activation of immunoglobulin factors (Ighg2c, Jchain and Igha) within 
the lesion core, which probably contribute to maintaining host defences 
and antigen binding within the fibrotic core (Supplementary Fig. 32b). 
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Spatial prioritization also highlighted a robust expression of Dbi55 along 
the lesion border (Supplementary Fig. 32b). As Dbi modulates the activ-
ity of the neurotransmitter γ-aminobutyric acid, the expression of this 
gene may be involved in the reported reduction of neuronal activity in 
the vicinity of lesion borders. Moreover, our analyses identified Prdx6 
as highly associated with the lesion border, suggesting the expression 
of this antioxidant enzyme may protect the surrounding reactive neural 
tissue from oxidative injury (Supplementary Fig. 32b). Last, spatial 
prioritization identified distinct subcompartments of the lesion core 
itself. We observed that genes associated with iron metabolism (Flt1) 
expressed diffusely throughout the lesion, but genes associated with 
fat metabolism (Plin2) confined to the innermost aspects of the lesion 

core, and genes associated with actin sequestration (Tms4bx) extending 
out along the lesion edges (Fig. 6k and Extended Data Fig. 8f).

To validate the spatial localization of genes identified through DE 
analysis of lesion compartments or spatial prioritization with Magellan, 
we carried out further in situ hybridization and immunohistochemical 
analyses. These experiments recapitulated the localization of genes 
prioritized by both methods, including Col1a1, Id3, Plin2 and Tmsb4x 
(Supplementary Fig. 34).

Together, these results establish a resource to explore the multi-
cellular responses to SCI across the cytoarchitecture of the spinal 
cord, and validate the ability of spatial prioritization to resolve both 
well-documented and new aspects of these responses.
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A 4D spatial atlas of SCI
The ability to visualize the CNS in three dimensions using tissue clear-
ing technologies has opened new possibilities to study the anatomy 
and function of the nervous system56. Analogously, we reasoned that 
expanding our spatial transcriptomic atlas into a third spatial dimen-
sion would enable a more complete description of the biology of SCI. 
We further surmised that our snRNA-seq and multiome atlases could 
be overlaid onto this 3D model of the spinal cord to resolve the spati-
otemporal distribution of the transcriptional and regulatory responses 
across the compendium of experimental conditions included in our 
Tabulae.

To develop a four-dimensional (4D) spatial atlas of the spinal cord, 
we collected 16 tissue sections that were equally spaced along the 
dorsoventral axis of spinal cords from uninjured and injured mice at 
7 days and 2 months after SCI (Fig. 7a). The distance between each 
section was approximately 50 μm, which ensured a dense coverage 
of the third spatial dimension. After quality control and registration 
to a common 3D coordinate system, we obtained a dataset com-
prising 37,558 spatial barcodes from 48 sections (Supplementary  
Fig. 35).

To validate the construction of our 4D atlas, we first confirmed that 
our dataset resolved the established spatial distributions of cell types 
in the uninjured and injured spinal cord, and inspected the expression 
of well-studied inhibitory and facilitating molecules (Fig. 7b, Extended 
Data Fig. 9, Supplementary Fig. 36 and Supplementary Note 5).

To increase the resolution of this spatiotemporal atlas, we again lev-
eraged our snRNA-seq atlas to deconvolve the cellular composition of 
each spatial barcode (Supplementary Figs. 37 and 38). This procedure 
resolved cellular subpopulations within highly specific locations, such 
as ependymal cells and border-forming macrophages. Moreover, dorsal 
and ventral neurons were appropriately separated along the coronal 
plane, and the locations of specific neuronal subpopulations such as 
CSF-contacting neurons, Vsx2-expressing neurons and motor neurons 
were correctly resolved (Fig. 7c).

We next aimed to integrate all the Tabulae into a single, unified frame-
work. Using Tangram, we embedded single-nucleus transcriptomes and 
epigenomes onto our 4D atlas of the mouse spinal cord, generating a 
unified dataset of 554,324 single-nucleus or spatial barcodes that were 
each associated with a full transcriptome, an experimental condition 
and x, y and z coordinates (Fig. 7d).

We then applied Magellan to the integrated spatial dataset. This 
spatial prioritization reflected the severity-dependent increase 
in transcriptional perturbation within increasing injury severity 
(Fig. 7e). Consistent with these observations, Magellan captured 
severity-dependent changes in genes associated with peripheral 
immune cell invasion, astrocytic demarcation of the lesion and neuronal 
death (Supplementary Fig. 39). Moreover, we spatialized the expres-
sion of conserved early neuronal responses, as well as late-diverging 
expression of programs associated with circuit reorganization (Sup-
plementary Fig. 40). We then linked these changes in cell-type com-
position and gene expression to transcription factor accessibility by 
spatializing the accessibility of transcription factors involved in the 
establishment of the tripartite barrier (Fig. 7f and Supplementary  
Fig. 41).

Our snRNA-seq atlas identified a profound transcriptional perturba-
tion across spinal cord cell types in old mice following SCI. We therefore 
sought to understand the spatial distribution of this perturbation. 
Magellan revealed that old mice developed an expanded and poorly 
circumscribed territory of transcriptional perturbation as compared to 
young mice, reflecting their failure to re-establish the tripartite neuro-
protective barrier. This failure was reflected by global upregulation of 
the BBB dysfunction module, and downregulation of gene expression 
programs associated with BBB identity (Fig. 7g and Supplementary 
Fig. 42). Three-dimensional visualization of genes associated with 

peripheral immune invasion underscored the failure to demarcate the 
lesion in old mice (Fig. 7h).

Collectively, these results establish the feasibility of constructing 
an integrated transcriptomic and epigenomic atlas of healthy and per-
turbed tissues across four spatiotemporal dimensions.

Enhanced barrier formation restores walking
The Tabulae Paralytica documented the spatially and temporally 
dependent activation of transcriptional and regulatory mechanisms 
that are triggered after SCI to re-establish a tripartite neuroprotec-
tive barrier. Conversely, our snRNA-seq atlas identified disruption 
of the cell types and subtypes that establish the tripartite barrier in 
old mice (Fig. 4d,h and Extended Data Fig. 5a–h), and this disrup-
tion was accompanied by poorly circumscribed lesions (Fig. 4e–g), 
a decrease in the proportion of surviving neurons (Fig. 4d) and 
impaired recovery of neurological functions (Fig. 4b,c and Supple-
mentary Video 3). These observations led us to hypothesize that 
interventions that accelerate wound repair by promoting the for-
mation of the tripartite barrier could restore neurological functions  
in old mice.

Because we found that the number of Id3-expressing, border-forming 
astrocytes was decreased in old mice (Fig. 4f,g), we reasoned that 
increasing their production would accelerate the formation of the 
astrocyte barrier, limiting lesion size and preserving neurological func-
tion. We previously found that the delivery of epidermal growth factor 
(EGF) and fibroblast growth factor 2 (FGF2) increased both the prolifera-
tion and absolute number of border-forming astrocytes37. Moreover, 
it is established that the delivery of VEGF accelerates endothelial cell 
proliferation and reformation of vascular networks57. We therefore 
engineered lentiviruses to overexpress Eg f, Fg f2 and Veg f and, as a 
proof-of-principle test, delivered these vectors to the lower thoracic 
spinal cord 2 days before SCI (Fig. 8a and Extended Data Fig. 10a). This 
procedure increased the production of border-forming astrocytes, 
reduced the number of CD45+ infiltrating immune cells, augmented 
the re-establishment of the blood–spinal cord barrier and resulted in 
smaller and more circumscribed lesions (Fig. 8b,c and Extended Data 
Fig. 10b–e). In addition, treated old mice showed a natural recovery of 
walking resembling that of young mice subjected to the same severity 
of SCI (Fig. 8d–f, Extended Data Fig. 10f,g and Supplementary Video 3).

Together, these findings demonstrate that interventions that aug-
ment the tripartite neuroprotective barrier and thereby maintain the 
immune-privileged environment of the spinal cord can prevent the 
exaggerated neural damage resulting from SCI in aged mice.

Discussion
SCI triggers a coordinated cascade of cellular and molecular responses, 
whose spatiotemporal complexity has thus far prevented the devel-
opment of safe and effective therapies to repair the injured spinal 
cord. To help to unravel this complexity, we established the Tabulae 
Paralytica: a resource comprising multimodal single-cell and spatial 
atlases of SCI. We profiled RNA expression in more than 400,000 nuclei, 
spanning 18 experimental conditions that captured the most com-
monly studied manipulations in basic and translational research on 
SCI that could be made accessible for these experiments. The scale 
of our snRNA-seq atlas significantly extends past single-cell studies 
of the injured spinal cord, enabling a more complete characteriza-
tion of the cellular and molecular responses triggered by injury16,58,59. 
We simultaneously profiled the dynamics of chromatin accessibility 
and gene expression in a further 40,000 cells to dissect the regula-
tory programs that direct the response to injury. To delineate these 
responses within the cytoarchitecture of the injured spinal cord, we 
generated a spatial transcriptomic atlas of the injury that we extended 
into four spatial and temporal dimensions. We integrated these atlases 
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to provide an unprecedented window into the genome-wide molecular 
cascade that unfolds after an injury to the spinal cord—from epige-
netic regulation, to transcriptional programs within individual cells, 
to spatially and temporally dependent multicellular responses—that 
we overlaid onto a 4D model of the spinal cord. In Supplementary 

Note 6, we discuss the implications of the Tabulae Paralytica for the  
field of SCI.

The Tabulae Paralytica embody a number of technological and 
conceptual advances that demonstrate how genome-wide single-cell 
and spatial technologies can deliver new insights into uninjured and 
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perturbed tissues. On a conceptual level, we demonstrate how the 
increasing scale of single-cell technologies enables a comprehensive 
interrogation of the experimental manipulations relevant to any given 
disease within a single study. On a technical level, we establish the pos-
sibility of extending spatial transcriptomics into three and even four 
spatial and temporal dimensions within a common coordinate frame-
work. Moreover, we show that the integration of multiomic single-cell 
atlases allows us to overlay patterns of chromatin accessibility onto a 
4D spatial model. Finally, our findings illustrate the power of cell type 
and spatial prioritization, as implemented by Augur and Magellan, to 
resolve the molecular basis of diseases or biological perturbations 
using single-cell and spatial genomics.

The Tabulae Paralytica, or ‘atlases of spinal cord injury’, will serve as 
(1) a foundational resource to understand the pathobiology of SCI; (2) a 
reference of cellular and molecular responses to predict and interrogate 
the consequences of new therapeutic strategies; (3) a conceptual and 
technical framework to advance spatially resolved single-cell studies 
of disease and biological perturbations and (4) a translational resource 
to uncover new biological mechanisms of SCI that can be exploited to 
develop therapies to repair the injured spinal cord.
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promote the formation of the tripartite barrier. b, Composite tiled scans of 
GFAP and CD45 in horizontal sections from representative old and treated 
mice. Line graph demonstrates CD45 intensity at specific distances rostral  
and caudal to lesion centres. Bar graph shows the AUC (independent samples 
two-tailed t-test; n = 5 per group; t = 4.57; P = 0.002). c, Horizontal sections 
from representative old and treated mice identifying a restoration of 
Sox9ONId3ON cells in the astrocyte border region in treated mice. Scale bar, 10 μm. 
Right, bar graph indicates the density of Sox9ONId3ON cells in the astrocyte 

border region (independent samples two-tailed t-test; n = 5 per group; t = 6.84; 
P = 0.0002). d, Chronophotography of walking in old mice without (top) and 
with (bottom) a gene therapy intervention to promote the formation of the 
tripartite barrier. e, Walking performance of old mice with and without treatment 
(independent samples two-tailed t-test; n = 5 per group; t = 4.85; P = 0.001).  
f, Experimental conditions assigned to old mice that received gene therapy by  
a machine-learning model trained on kinematics data from untreated animals. 
Mice were predominantly assigned to the young mouse group, indicating that 
the walking patterns of treated old mice most resemble those of young mice.
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Methods

Mouse model and experimental conditions
Adult male or female C57BL/6 mice (15–25 g body weight, 8–15 weeks 
of age) or transgenic mice were used for all experiments. Aged mice 
were purchased from JAX at 60 weeks of age (stock no. 000664). Vsx2Cre  
(MMMRRC 36672, also called Chx10Cre) transgenic mouse strain was 
bred and maintained on a mixed genetic background (C57BL/6). Hous-
ing, surgery, behavioural experiments and euthanasia were all per-
formed in compliance with the Swiss Veterinary Law guidelines. Manual 
bladder voiding and all other animal care was performed twice daily 
throughout the entire experiment. All procedures and surgeries were 
approved by the Veterinary Office of the Canton of Geneva (Switzerland; 
authorizations GE/145/2).

A crush injury was selected as the primary injury model because, in 
our hands, this model produces more homogeneous functional defi-
cits10,37. Spinal cord crushes were performed as previously described10,37. 
For time-course experiments, animals were euthanized at 1 day, 4 days, 
7 days, 14 days, 1 month or 2 months postinjury. Crush injuries were per-
formed at several severities by including spacers within No. 5 Dumont 
forceps (Fine Science Tools) such that, when closed, there was a maximal 
distance of 1, 0.5, 0.25 or 0 mm (no spacer) with a tip width of 0.5 mm. 
Dorsal hemisection SCIs were performed as previously described14. For 
dorsal hemisection SCI, a laminectomy was made at the mid-thoracic 
level (T10) and the dorsal half of the spinal cord was cut using a micro-
scapel. Contusion SCIs were performed as previously described8,12.

Minocycline was administered with intraperitoneal injections as 
previously described60–62, with a loading dose of 50 mg kg−1 at 1 and 24 h 
postinjury, followed by maintenance doses of 25 mg kg−1 every 24 h for 
the next 5 days. Methylprednisolone was administered intramuscu-
larly as previously described63, with a loading dose of 60 mg kg−1 at 1 h 
postinjury then an extra 30 mg kg−1 dose every 6 h for 24 h. ChABC was 
delivered by means of lentiviral injections as previously described64. 
In brief, the Proteus vulgaris ChABC gene was previously modified 
to make a mammalian-compatible engineered ChABC gene65. The 
modified ChABC complementary DNA (cDNA) was subcloned into a 
lentiviral transfer vector (termed LV-ChABC) with the mouse phos-
phoglycerate kinase promoter66. The final viral titre was 479 μg ml−1 of 
P24, corresponding to roughly 106 TU μl−1. A control lentiviral vector 
(termed LV-GFP) was generated from the same transfer vector contain-
ing the cDNA coding for green fluorescent protein, with a viral titre of 
346 μg ml−1 of P24.

Viral vectors and vector production
Viruses used in this study were either acquired commercially or 
produced at the EPFL core facility. The following adeno-associated 
virus (AAV) plasmids were used and detailed sequence information 
is available as detailed or on request: AAV-CAG-flex-human Diph-
theria Toxin Receptor (DTR) (plasmid gift from S. Arber), and pro-
duced as AAV5 at the EPFL Bertarelli Foundation Platform in Gene 
Therapy and SIN-cPPT-PGK-FGF2-WPRE, SIN-cPPT-PGK-EGF-WPRE 
SIN-cPPT-PGK-VEGF-WPRE, SIN-cPPT-GFAP-GDNF-WPRE and 
LV-PGK-ChABC (gift from E. Bradbury). Injection volumes, coordinates 
and experimental designs are described below.

Biological repair intervention in ageing mice
General surgical procedures have been previously described in 
detail10,12,37. Surgeries were performed at EPFL under aseptic condi-
tions and under 1–2% isoflurane in 0.5–1 l min−1 flow of oxygen as general 
anaesthesia, using an operating microscope (Zeiss) and rodent stere-
otaxic apparatus (David Kopf) as previously described12,37. Lentiviral 
injections were made 2 days before SCI to allow time for expression, 
and were targeted over the intended spinal cord segment to be injured. 
Lentivirals were injected into four sites (two sets of bilateral injections, 
0.30 μl per injection (all vectors diluted to 600 μg P24 per millilitre in 

sterile saline)) 0.6 mm below the surface at 0.15 μl min−1 using glass 
micropipettes connected through high-pressure tubing (Kopf) to 10 μl 
syringes under the control of a microinfusion pump. Moderate crush 
SCIs were introduced at the level of T10/T11 after laminectomy of a 
single vertebra by using No. 5 Dumont forceps (Fine Science Tools) 
with a spacer so that when closed a 0.5 mm space remained, and with 
a tip width of 0.5 mm to completely compress the entire spinal cord 
laterally from both sides for 5 s. After surgeries, mice were allowed 
to wake up in an incubator. Analgesia, buprenorphine (Essex Chemie 
AG, 0.01–0.05 mg kg−1 subcutaneously (s.c.)) or carprofen (5 mg kg−1 
s.c.), was given twice daily for 2–3 days after surgery. Animals were 
randomly assigned numbers and thereafter were evaluated blind to 
experimental conditions. Fourteen days after SCI, all mice were evalu-
ated in an open field and all animals showing any hindlimb movements 
were not studied further.

Neuron subpopulation-specific ablation
For ablation experiments with diphtheria toxin, Vsx2Cre mice were sub-
jected to crush SCI as described above. Three sets of bilateral injections 
of AAV5-CAG-FLEX-DTR (ref. 67) were made over the T9, T10 and T11 
spinal segments (0.25 μl per injection) at a depth of 0.6 mm below the 
dorsal surface and separated by 1 mm. Two weeks after spinal infusions, 
mice received intraperitoneal injections of diphtheria toxin (Sigma, 
D0564) diluted in saline (100 μg kg−1) to ablate Vsx2 neurons. Kinemat-
ics were evaluated in all mice before ablation, 2 weeks postablation 
and again after SCI.

Behavioural assessments
Behavioural procedures have been previously described in detail12,68,69. 
In brief, during overground walking, bilateral leg kinematics were cap-
tured with 12 infrared cameras of a Vicon Motion Systems that tracked 
reflective markers attached to the crest, hip, knee, ankle joints and distal 
toes. The limbs were modelled as an interconnected chain of segments 
and a total of 80 gait parameters were calculated from the recordings. 
To evaluate differences between experimental conditions, as well as to 
identify the most relevant parameters to account for these differences, 
we implemented a multistep multifactorial analysis based on principal 
component analysis, as previously described in detail12,68,69, and coupled 
to automated, markless tracking software70. In brief, reconstructed 
kinematic data were processed with custom MATLAB scripts to com-
pute gait parameters. For each experiment, a principal component 
analysis was performed by computing the covariance matrix A of the 
ensemble of parameters over the gait cycle, after subtraction of their 
respective mean values. The principal components were computed 
from eigenvalues λj and eigenvectors Uj of A. The principal components 
were ordered according to the amount of data variance accounted for 
by each component. The coordinate of each gait cycle on the first prin-
cipal component, that is, the component vector explaining the greatest 
amount of variance across the gait parameters was thereafter referred 
to as the walking score. These scores were subsequently normalized 
for each experiment. Individual parameters were then selected to be 
compared between groups on the basis of their correlation to the first 
principal component.

Perfusions
Mice were perfused at the end of the experiments. Mice were deeply 
anaesthetized by an intraperitoneal injection of 0.2 ml of sodium 
pentobarbital (50 mg ml−1). Mice were transcardially perfused with 
PBS followed by 4% paraformaldehyde in PBS. Tissue was removed and 
postfixed overnight in 4% paraformaldehyde before being transferred 
to PBS or cryoprotected in 30% sucrose in PBS.

Immunohistochemistry
Immunohistochemistry was performed as previously described10,12,37. 
Perfused postmortem tissue was cryoprotected in 30% sucrose in PBS 
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for 48 h before being embedded in cryomatrix (Tissue Tek OCT, Sakura 
Finetek Europe B.V.) and freezing. Next, 30 μm thick transverse or 
horizontal sections of the spinal cord were cut on a cryostat (Leica), 
immediately mounted on glass slides and dried or in free floating 
wells containing PBS plus 0.03% sodium azide. Primary antibodies 
were: rabbit anti-GFAP (glial fibrillary acidic protein) (1:1,000; Dako); 
mouse anti-GFAP (1:1,000; Cell Signalling Technology), rat anti-GFAP 
(1:1,000; ThermoFisher Scientific); rabbit anti-albumin (1:250; Abcam); 
rabbit anti-Chat (1:200; Millipore); guinea pig anti-NeuN (1:300; Mil-
lipore); chicken anti-RFP (1:500, Novus Biologicals); rabbit anti-Chx10 
(also known as Vsx2) (1:500, Novus Biologicals); rat anti-CD45 (1:100, 
BD Biosciences); goat anti-Sox9 (1:200, Novus Biologicals); rab-
bit anti-Id3 (1:500; Cell Signaling Technology); rabbit anti-PKD1L2 
(1:1,000; Merck Millipore). Fluorescent secondary antibodies were 
conjugated to Alexa 488 (green), Alexa 405 (blue), Alexa 555 (red) or 
Alexa 647 (far red) (ThermoFisher Scientific). The nuclear stain was 
4′,6′-diamidino-2-phenylindole dihydrochloride (DAPI; 2 ng ml−1; 
Molecular Probes). Sections were imaged digitally using a slide scan-
ner (Olympus VS-120 Slide scanner) or confocal microscope (Zeiss 
LSM880 + Airy fast module with ZEN 2 Black software). Images were 
digitally processed using ImageJ (ImageJ, NIH) software or Imaris (Bit-
plane, v.9.0.0).

Fluorescence in situ hybridization
To validate the spatial gene expression patterns after SCI that emerged 
from spatial transcriptomics analyses, we performed in situ hybridi-
zation of the relevant messenger RNA molecules using RNAscope 
(Advanced Cell Diagnostics). Target genes were obtained from spatial 
transcriptomics data by performing spatial prioritization with Magel-
lan, and the results were cross-referenced against a list of validated 
probes designed and provided by Advanced Cell Diagnostics. Probes 
were obtained for the following genes: Col1a1, catalogue no. 319371; 
Plin2, catalogue no. 577111; Tmsb4x, catalogue no. 472851. We then 
generated 12 μm cryosections from fixed-frozen spinal cords as previ-
ously described and performed fluorescence in situ hybridization for 
each probe according to the manufacturer’s instructions, using the 
RNAscope Fluorescent Multiplex Reagent Kit (catalogue no. 323133).

Tissue clearing (CLARITY)
Samples were incubated in X-CLARITY12,71,72 hydrogel solution (Logos 
Biosystems Inc.) for 24 h at 4 °C with gentle shaking. Samples were 
then degassed and polymerized using the X-CLARITY Polymerisation 
System (Logos Biosystems), followed by washes in 0.001 M PBS for 
5 min at room temperature. Samples were next placed in the X-CLARITY 
Tissue Clearing System (Logos Biosystems), set to 1.5 A, 100 rpm, 37 °C, 
for 29 h. Clearing solution was made in-house with 4% SDS, 200 mM 
boric acid with dH2O, pH adjusted to 8.5. Following this, samples were 
washed for at least 24 h at room temperature with gentle shaking in 
0.1 M PBS solution containing 0.1% Triton X-100 to remove excess SDS. 
Finally, samples were incubated in 40 g of Histodenz dissolved in 30 ml 
of 0.02 M PB, pH 7.5, 0.01% sodium azide (refractive index 1.465) for at 
least 24 h at room temperature with gentle shaking before imaging.

3D imaging
Imaging of cleared tissue was performed using a customized mes-
oSPIM73 and CLARITY-optimized light-sheet microscope (COLM)72. A 
custom-built sample holder was used to secure the CNS in a chamber 
filled with refractive index matching solution. Samples were imaged 
using either a 1.25× or 2.5× objective at the mesoSPIM73 and a 4× or 
10× objective at the COLM72 with one or two light sheets illuminating 
the sample from both the left and right sides. The voxel resolution 
in the x, y and z directions was 5.3 × 5.3 × 5 μm for the ×1.25 acquisi-
tion and 2.6 × 2.6 × 3 μm for the 2.5× acquisition. The voxel resolu-
tion of the COLM was 1.4 × 1.4 μm by 5 μm. Images were generated as 
16 bit TIFF files and then stitched using Arivis Vision4D (Arivis AG).  

3D reconstructions and optical sections of raw images were generated 
using Imaris (Bitplane, v.9.0.0) software.

Histological analysis
To quantify immune invasion after different models of SCI, we measured 
the percentage of CD45 immunopositive area after binarizing the fluo-
rescent signal using the image analysis software Fiji. To quantify BSCB 
dysfunction and immune invasion in young and old mice, we measured 
immunopositive areas for albumin and CD45, respectively, after bina-
rizing the fluorescent signal using the image analysis software Fiji. To 
assess the formation of astrocyte scar borders after SCI in young and old 
mice, we counted the number of Sox9ON cells using the image analysis 
software QuPath and the cell detection functionality with default set-
tings (v.0.4.3). We then classified Sox9ON cells as either Id3ON or Id3OFF by 
setting a mean signal intensity threshold. We used the same approach 
to count the number of NeuNON and PKD1L2ON neurons, to assess the 
resilience of CSF-contacting neurons after SCI. To quantify the number 
of Vsx2ON neurons after neuronal subpopulation-specific ablation with 
DTR we used the image analysis software Imaris (Bitplane, v.9.0.0).

Chronophotography
Chronophotography was used to generate a representative series of still 
pictures arranged in a single photograph to illustrate the locomotor 
abilities of mice. Videos at 25 fps or photographs at 15 fps were recorded 
while mice were performing locomotor tasks such as quadrupedal 
walking on the runway. Images from these recordings were chosen 
to best illustrate the different consecutive phases of walking of the 
hindlimbs, that is, stance phases and swing phases. The frequency of 
chosen pictures varied due to the varying velocity of the mice. The 
series of pictures were assembled in Photoshop while blending out 
non-essential details.

snRNA-seq library preparation
Single-nucleus dissociation of the mouse lumbar spinal cord was 
performed according to our established procedures30,48. Following 
euthanasia by isoflurane inhalation and cervical dislocation, the lumbar 
spinal cord site was immediately dissected and frozen on dry ice. We 
dounced spinal cords in 250 μl of sucrose buffer (0.32 M sucrose, 10 mM 
HEPES (pH 8.0), 5 mM CaCl2, 3 mM Mg acetate, 0.1 mM EDTA, 1 mM dithi-
othreitol (DTT)) and 0.1% Triton X-100 with the Kontes Dounce Tissue 
Grinder. Then, 1.1 ml of sucrose buffer was added and filtered through 
a 40 μm cell strainer. The lysate was centrifuged at 3,200g for 5 min at 
4 °C. The supernatant was decanted, and 1 ml of sucrose buffer added 
to the pellet and incubated for 1 min. The pellet was homogenized 
using an Ultra-Turrax and 3 ml of density buffer (1 M sucrose, 10 mM 
HEPES (pH 8.0), 3 mM Mg acetate, 1 mM DTT) was added below the 
nuclei layer. The tube was centrifuged at 3,200g at 4 °C for 10 min and 
supernatant was immediately poured off. Nuclei on the bottom half of 
the tube wall were resuspended in 100 μl of PBS with 1% bovine serum 
albumin for subsequent snRNA-seq or in 10X Nuclei Buffer (catalogue 
no. 2000153, 10X Genomics) for subsequent single-nucleus multi-
ome sequencing. Resuspended nuclei were filtered through a 30 μm 
strainer, and adjusted to 1,000 nuclei per microlitre. We carried out 
snRNA-seq library preparation using the 10X Genomics Chromium 
Single Cell Gene Expression Kit v.3.1. The nuclei suspension was added 
to the Chromium RT mix to achieve loading numbers of 10,000 nuclei. 
For downstream cDNA synthesis, library preparation and sequencing, 
the manufacturer’s instructions were followed.

Multiome sequencing library preparation
We carried out snRNA and ATAC library preparation using the 10X 
Genomics Chromium Single Cell Multiome ATAC + Gene Expression 
Kit. First, the transposition mix was added to the resuspended nuclei 
followed by 60 min of incubation at 37 °C. The transposed nuclei were 
added to the Chromium RT mix to achieve loading numbers of 10,000 



nuclei. The manufacturer’s instructions were followed for downstream 
cDNA synthesis, library construction, indexing and sequencing.

Spatial transcriptomics library preparation
We carried out two separate experiments to study the cytoarchitecture 
of the lesion microenvironment after SCI. First, we prepared sections 
from uninjured mice, 7 days and 2 months after crush SCI (performed 
with a 0.5 mm spacer as described above). For each experimental condi-
tion, we prepared sections from the lesion epicentre of three independ-
ent biological replicates. Second, to prepare our 4D spatiotemporal 
atlas, we collected sections throughout the entire spinal cord of mice 
from each of the three experimental conditions. The SCI sites of mice 
were embedded in optimal cutting temperature compound and cryo-
sections were generated at 10 μm at −20 °C. For the 4D atlas, every fifth 
section was collected throughout the entire dorsoventral axis of each 
spinal cord. Sections were immediately placed on chilled Visium Tissue 
Optimization Slides (catalogue no. 1000193, 10X Genomics) or Visium 
Spatial Gene Expression Slides (catalogue no. 1000184, 10X Genom-
ics). Tissue sections were then fixed in chilled methanol and stained 
according to the Visium Spatial Gene Expression User Guide (catalogue 
no. CG000239 Rev A, 10X Genomics) or Visium Spatial Tissue Optimiza-
tion User Guide (catalogue no. CG000238 Rev A, 10X Genomics). For 
gene expression samples, tissue was permeabilized for 12 min, which 
was selected as the optimal time on the basis of tissue optimization 
time-course experiments. Brightfield histology images were taken 
using a ×10 objective on a slide scanner (Olympus VS-120 Slide scan-
ner). For tissue optimization experiments, fluorescent images were 
taken with a TRITC (tetramethylrhodamine) filter using a ×10 objective 
and 400 ms exposure time. Libraries were prepared according to the 
Visium Spatial Gene Expression User Guide.

Read alignment
Following sequencing on our HiSeq4000 (EPFL Gene Expression Core 
Facility), snRNA-seq reads were aligned to the latest Ensembl release of 
the mouse genome (GRCm38.101), and a matrix of unique molecular 
identifier (UMI) counts was obtained using CellRanger (10X Genomics, 
v.4.0.0)74. For spatial transcriptomics, a spatial expression UMI count 
matrix was obtained using SpaceRanger (10X Genomics, v.1.0.0). For 
the multiome dataset, RNA-seq and ATAC-seq data were aligned to the 
reference genome using CellRanger-ARC (10X Genomics, v.2.0.0), and 
a matrix of UMI counts was obtained for the RNA modality. The ATAC 
modality was then processed further using ArchR, as described below.

snRNA-seq preprocessing and quality control
Droplet-based snRNA-seq experiments are known to be affected by 
ambient RNA contamination, whereby freely floating RNA molecules 
are encapsulated along with a cell or nucleus in a single droplet and 
spuriously attributed to the endogenous expression profile of the 
encapsulated cell75. The presence of ambient RNA is a potential source 
of batch effects and spurious DE. To mitigate this possibility, we used 
CellBender76 to remove ambient RNA molecules and filter empty drop-
lets. CellBender remove-background was run for 50 epochs with a learn-
ing rate of 5 × 10−5. Corrected count matrices were then imported into 
Seurat77 for further quality control. Quality control metrics included 
the number of UMIs per cell, the number of genes detectably expressed 
per cell and the proportion of UMI counts arising from mitochondrial 
genes. For the pilot dataset, cells with between 200 and 40,000 UMIs, 
and fewer than 7,500 genes expressed, were retained. For the snRNA-seq 
and multiome datasets, cells with at least 200 UMIs were retained. The 
proportion of mitochondrial counts was not used to perform cell-level 
quality control. Further quality control was performed for the multi-
ome dataset on the basis of the ATAC modality, as described further 
below. Low-quality libraries were identified as those with distribu-
tions of number of UMIs, number of genes expressed or proportion 
of mitochondrial counts that differed markedly from the remainder 

of the libraries in the dataset, and a total of three low-quality libraries 
(two from the snRNA-seq dataset and one from the multiome dataset) 
were removed.

Putative doublets were then identified and filtered using a combi-
nation of approaches. We tested the performance of four computa-
tional methods for doublet detection in our pilot dataset, including 
DoubletFinder78, scDblFinder79, scds79,80 and Scrublet81. On the basis 
of this analysis, we selected scDblFinder and scds as the two methods 
that (1) did not show an overt bias towards doublet detection for cells 
of any particular type, (2) that showed the highest agreement with one 
another and (3) that were also found to be among the top-performing 
methods in an independent benchmark81. We adopted a conservative 
approach by filtering barcodes from the union of those called doublets 
by either scDblFinder or scds in both the pilot and snRNA-seq datasets. 
For the multiome dataset, doublets were instead identified and filtered 
using ArchR, as described below.

Integration and cell-type annotation
Before clustering and cell-type annotation, we first performed batch 
effect correction and data integration across experimental conditions 
using Harmony82. Gene expression counts were normalized to counts 
per 10,000 and log transformed, and the top 2,000 variable genes were 
identified using the ‘vst’ method in Seurat. Gene expression values were 
then scaled and centred and provided as input to Harmony, which was 
run with 50 principal components. The integrated Harmony embed-
dings were then provided as input to k nearest neighbour graph con-
struction and Leiden clustering using the default Seurat workflow77, as 
in our previous studies8,30,48. Cell types were then manually annotated on 
the basis of marker gene expression, guided by previous studies of the 
mouse spinal cord8,23,30,48,58,83–93 and other relevant cell atlases of major 
cell types94,95. Local and projecting neuronal subpopulations were anno-
tated on the basis of Nfib and Zfhx3 expression, respectively83. Astrocyte 
subtype annotations were validated through comparisons to white 
and grey matter astrocyte signatures reported in ref. 96, pan-reactive 
astrocyte signature reported by ref. 97 and cell-cycle signature genes 
from ref. 98, in each case using the Seurat function ‘AddModuleScore’. 
Clusters corresponding to damaged cells or doublets that had survived 
initial quality control were removed at this stage. In the pilot data-
set, we performed an initial round of clustering to identify coarse cell 
types with a resolution of 0.05, followed by subclustering of neurons 
(resolution 0.5) and glia (resolution 0.1) to annotate more fine-grained 
subtypes. In the snRNA-seq dataset, we repeated the clustering analysis 
for several values of the resolution parameter (0.01, 0.05, 0.2, 0.5, 2) 
to annotate cell types across several resolutions (for example, neu-
rons → ventral neurons → ventral excitatory interneurons). We then used 
the clustree package15 to link clusters across adjacent resolutions into 
a hierarchical clustering tree, as previously described8,30,48.

Pilot dataset and meta-analysis of published spinal cord 
snRNA-seq datasets
We conducted an initial pilot experiment to confirm that our dissocia-
tion procedures enabled the recovery of all the cell types comprising 
the mouse spinal cord. snRNA-seq libraries were prepared from one 
uninjured mouse and one mouse 7 days after crush SCI, and deeply 
sequenced to a target depth of 100,000 reads per nucleus. After 
preprocessing and quality control as described above, we retained 
9,170 nuclei from the injured sample and 9,099 nuclei from the unin-
jured sample. Following data integration and cell-type annotation as 
described above, we confirmed that we recovered the major cell types 
of the spinal cord in both the injured and uninjured spinal cords, and 
that changes in cell-type proportions across experimental conditions 
were concordant with the established pathophysiology of SCI. We then 
compared the cell-type proportions in our pilot dataset to those in 16 
published single-cell datasets from the mouse spinal cord16,23,30,58,59,83–93. 
Automated cell-type annotation of published datasets was performed 
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using the label transfer workflow in Seurat, with our own previously 
published dataset from the uninjured lumbar spinal cord30 used as 
the reference. We confirmed that the label transfer workflow yielded 
reliable predictions by comparing automated cell-type annotations 
to manual annotations from a published dataset91. This analysis estab-
lished that our dissociation protocols allowed us to recover the major 
cell types of the spinal cord in proportions consistent with published 
snRNA-seq studies of the whole adult spinal cord. Finally, we took 
advantage of our deeply sequenced pilot dataset to calibrate our target 
sequencing depth of our main experiments, and selected a target depth 
of 75,000 reads per nucleus on the basis of downsampling analysis of 
the pilot dataset.

snRNA-seq atlas
For the snRNA-seq dataset, preprocessing, quality control, data inte-
gration and cell-type annotation were performed as described above, 
yielding a dataset comprising 435,099 nuclei from 52 mice spanning 
18 experimental conditions. Two libraries were removed at the quality 
control stage, one from 7 days postinjury and one from male mice, 
because of low numbers of UMIs and genes per cell. Marker genes 
were identified for each cluster using the FindMarkers function in 
Seurat. We visualized the distribution of cell types, experimental 
conditions and the expression of marker genes with uniform mani-
fold approximation and projection (UMAP) embeddings of both the 
entire dataset as well as each major cell type. Colour palettes were 
selected using the Palo R package to perform spatially aware colour 
palette optimization99. Marker gene dotplots were constructed using 
the DotPlot function in Seurat. Cell-type proportions were visualized 
using sunburst plots100 and Sankey diagrams. The cell-cycle posi-
tions of astroependymal cells were estimated using tricycle21, which 
provides a universal method for estimating progression through the 
phases of the cell cycle based on projection of cell-cycle gene expres-
sion onto embeddings defined by principal component analysis of a 
fixed reference dataset in which the cell cycle is the primary source 
of transcriptional variation. The output of tricycle is a cell-level con-
tinuous variable, θ, estimated as the polar angle around the origin 
for each cell, which takes on values between 0 and 2π. The authors 
of tricycle show that this angle captures structure in single-cell gene 
expression data that are not reflected in the discrete cell-cycle stages 
assigned by tools such as Seurat. To study the proportion of actively 
proliferating cells, astroependymal cells were discretized along θ into 
two bins corresponding to actively proliferating (0.25π < θ < 1.5π;  
S/G2/M) or non-proliferating (G1/G0), as recommended by the authors 
of tricycle21. The expression of a previously described gene module22 
associated with BBB dysfunction was estimated using the Seurat func-
tion AddModuleScore. Unless otherwise stated, all cell subtype analy-
ses were performed at level 5 of the clustering tree (corresponding 
to a resolution of 2).

Cell-type proportions
Testing for differences in cell-type proportions within single-cell data 
can lead to false discoveries because the data are compositional in 
nature and, consequently, increase the proportion of one cell type, 
which can cause an artefactual decrease in the proportions of every 
other cell type101. To avoid this pitfall, we used the propeller method102, 
as implemented in the speckle R package, to test for differences in 
cell-type proportions between experimental conditions, as an inde-
pendent benchmark showed this to be among the most accurate 
methods in balancing control of the false discovery rate with statisti-
cal power103. The details of individual cell-type proportion analyses 
are described below.

DE
To identify genes differentially expressed between experimental con-
ditions, we performed DE analysis by aggregating expression from all 

cells of a given type within each replicate into a ‘pseudobulk’ profile, 
as previously described48 and implemented in the Libra R package 
(https://github.com/neurorestore/Libra). In our previous work48, we 
demonstrated that this approach allowed us to overcome false discov-
eries caused by variability between biological replicates104. We showed 
that widely used single-cell DE methods can conflate this variability 
with the effect of a biological perturbation, leading to hundreds or even 
thousands of false discoveries. We therefore instead used the likeli-
hood ratio test implemented in edgeR105 to identify DE genes between 
pseudobulks from each cell type. The details of individual DE analyses 
are described below.

GO enrichment analysis
GO term annotations for mouse were obtained from the GO Consortium 
website. GO terms annotated to fewer than five genes were excluded. 
The average expression level of genes associated with each GO term in 
individual cells was calculated using the Seurat function AddModuleS-
cores, which controls for the average expression of randomly selected 
control features. Linear mixed models were then used to test for dif-
ferences in GO module scores test across experimental conditions, 
using the ‘lmerTest’ R package to optimize the restricted maximum 
likelihood and obtain P values from the Satterthwaite approximation for 
degrees of freedom. The details of individual GO enrichment analyses 
are described below.

Cell-type prioritization
To identify cell types activated in response to each biological perturba-
tion captured in the Tabulae Paralytica, we used a machine-learning 
method for cell-type prioritization that we previously developed, 
named Augur8,30,31. In brief, Augur seeks to rank cell types on the basis of 
the intensity of their transcriptional response to a biological perturba-
tion. The key assumption underlying Augur is that cell types undergoing 
a profound response to a perturbation should become more separable, 
within the highly multidimensional space of gene expression, than 
less affected cell types. To quantify this separability, we framed this 
problem as a classification task. Augur first withholds a proportion of 
experimental condition labels, then trains a random forest classifier to 
predict the condition from which each cell was obtained (for instance, 
SCI or uninjured). The accuracy with which this prediction can be made 
from single-cell gene expression measurements is then evaluated in 
cross-validation, and quantified using the area under the receiver oper-
ating characteristic curve (AUC). This process is repeated separately 
for each cell type. The AUC then provides a quantitative measure of 
separability that can be used to rank cell types on the basis of the rela-
tive magnitude of their response to an arbitrary perturbation. We refer 
to this process as cell-type prioritization. Augur was run with default 
parameters directly on the UMI count matrix for all comparisons. To 
evaluate the robustness of cell-type prioritizations to the resolution 
at which neuronal subtypes were defined in the snRNA-seq data, we 
applied Augur at various clustering resolutions, and visualized the 
resulting cell-type prioritizations both on a hierarchical clustering tree15 
of cell types and as a progression of UMAPs8. The details of individual 
cell-type prioritization analyses are described below.

Conserved and divergent neuronal responses to SCI
To identify spinal cord neurons that were resilient or susceptible to SCI, 
we computed the log2 odds ratio between the uninjured spinal cord 
and each experimental condition in which the injured spinal cord was 
profiled at 7 days postinjury, using neuron subtypes defined at level 4 
of the clustering tree (corresponding to a resolution of 0.5), then identi-
fied resilient or susceptible neuron subtypes using a t-test on log2 odds 
ratios. To identify DE genes specific to CSF-contacting neurons at the 
most acute phase of the injury response, we used edgeR to test for an 
interaction term between neuronal subtype and experimental condi-
tion at 1 day postinjury, using pseudobulk gene expression profiles.

https://github.com/neurorestore/Libra


To quantify the degree to which transcriptional responses to injury 
were conserved across neuron subtypes, we computed the Spearman 
correlation between log-fold changes estimated by edgeR between 
each pair of level 4 neuron subtypes. For genes that were not quanti-
fied in one of the two subtypes, missing log-fold change values were 
replaced with zeros.

To characterize the conserved early response of neurons to SCI, we 
first filtered to genes that were differentially expressed within indi-
vidual level 4 neuron subtypes at a 10% false discovery rate. We then 
sorted these genes first by the number of neuron subtypes in which they 
were differentially expressed, and second by the mean absolute log-fold 
change estimated by edgeR. To delineate the time course with which this 
module of early-conserved genes was up- or downregulated in any given 
neuron subtype, we tested for differences in the average expression of 
a gene module comprising the top 25 early-conserved response genes 
(that is, the 25 genes that were upregulated in the greatest number of 
level 4 neuron subtypes and with the greatest mean log-fold change at 
1 day postinjury) using a linear mixed model. Separately, we computed 
module scores for GO terms within each neuron with the Seurat func-
tion AddModuleScore, as described above, then tested for differences 
between injured and uninjured neurons using a linear mixed model.

To quantify the expression of transcriptional programs associated 
with projection growth and morphogenesis, we used the median 
expression of genes associated with the GO term GO:0031175 (neural 
projection development) to construct a circuit reorganization score, as 
described above. We then computed the basal expression of this circuit 
reorganization score as the median GO module score in the uninjured 
spinal cord for each level 4 neuron subtype. To quantify upregulation 
of the circuit reorganization score after injury, we subtracted the basal 
expression score from the GO module score at each time point postin-
jury to yield induced expression scores. We then calculated the Pearson 
correlation between basal and induced circuit reorganization scores. 
We carried out similar analyses for the GO terms GO:0061564 (axon 
development) and GO:0016358 (dendrite development).

Cell-type prioritization was performed by comparing neurons from 
each level 4 subtype at each time point postinjury to neurons from the 
uninjured spinal cord.

Neurons remain differentiated after CNS injury
Individual marker genes for each neuron subtype were manually 
curated from literature after cross-referencing with other atlases, as 
described above. DE analysis was performed by comparing neurons 
from each level 4 subtype at each time point postinjury to neurons 
from the uninjured spinal cord using edgeR as described above, with a 
5% false discovery rate. We also constructed unbiased lists of the top n 
marker genes for each level 4 neuron subtype (for n = 5, 10 or 50) using 
the FindMarkers function in Seurat. We used the AddModuleScore 
function to summarize the average expression of the top n marker 
genes in each individual neuron, then used a linear mixed model to test 
for differences across experimental conditions as described above for 
GO enrichment analyses.

Facilitating and inhibiting molecule expression in the injured 
spinal cord
We visualized the expression of key facilitating and inhibiting molecules 
across the cell types and subtypes of the spinal cord using clustering 
trees, with the scaled mean expression for each cell type or subtype 
calculated as in the Seurat function DotPlot. To identify genes coordi-
nately up- or downregulated across level 4 neuron subtypes in response 
to ChABC treatment, we used edgeR to perform DE analysis as described 
above and performed a one-sample t-test on log-fold change estimates 
from edgeR. We then used linear mixed models to perform GO enrich-
ment analysis of ChABC treatment for each level 4 neuron subtype, as 
described above, and performed a one-sample t-test on coefficients 
estimated by the mixed models.

Cellular divergence between animal models of SCI
Cell-type proportions were compared using propeller, as described 
above, both for coarse cell types and for the most fine-grained subtypes 
of immune cells. Cell-type prioritization was performed by comparing 
neurons from each level 4 subtype between each pair of animal models 
(crush, contusion or hemisection). Separately, we tested for differences 
in the AUCs of dorsal and ventral level 4 neuron subtypes by comparing 
neurons from mild, moderate, severe or complete injuries to neurons 
from the uninjured spinal cord.

Immunomodulation does not confer neuroprotection after SCI
Cell-type prioritization was performed by comparing cell types at each 
resolution of the clustering tree from drug-treated and untreated but 
injured spinal cords. The proportions of coarse cell types were com-
pared using propeller as described above.

To dissect more subtle transcriptional effects of neuroprotec-
tive agents on surviving neurons, we developed a machine-learning 
approach to identify neurons showing an uninjured transcriptional 
phenotype. For each experimental condition involving injured and 
untreated mice (that is, excluding the uninjured and drug-treated 
conditions), we trained a random forest model on scaled and log- 
normalized gene expression data to distinguish cells from that condi-
tion (‘injured’ cells) to cells from the uninjured spinal cord (‘uninjured’ 
cells). Separate models were trained for each level 4 neuron subtype. 
We validated the accuracy of these models in tenfold cross-validation, 
finding that for any given injury condition and neuron subtype, they 
achieved a median accuracy of 96% and a median AUC of 0.99 (Sup-
plementary Fig. 13g). Moreover, we investigated the top-ranked genes 
according to feature importance, as quantified by the mean decrease 
in accuracy, and found that these tended to be differentially expressed 
across several neuron subtypes and a range of experimental compari-
sons (Supplementary Fig. 13h). We then applied each of these models 
in turn to neurons from the methylprednisolone and minocycline 
conditions, to predict whether they showed an injured or uninjured 
phenotype. The modal prediction across all models was then assigned 
to each neuron. To further characterize the transcriptional programs 
induced by neuroprotective agents, we then used linear mixed models 
to perform GO enrichment analysis of methylprednisolone or minocy-
cline treatment for each level 4 neuron subtype, as described above, 
and performed a one-sample t-test on coefficients estimated by the 
mixed models.

Sexually dimorphic responses to SCI are subtle
Cell-type prioritization was performed by comparing cell types at each 
resolution of the clustering tree from male and female spinal cords. The 
range of AUC values assigned by Augur in cross-validation was then 
compared to that observed in other comparisons involving the injured 
spinal cord at 7 days postinjury. Cell-type proportions were compared 
using propeller, as described above, both for coarse cell types and for 
the most fine-grained subtypes of immune cells.

Failure of tripartite barrier formation in old mice
Cell-type prioritization was performed by comparing cell types at each 
resolution of the clustering tree from young and old mice, and the 
range of AUC values assigned by Augur in cross-validation was again 
compared to that observed in other comparisons involving the injured 
spinal cord at 7 days postinjury. The proportion of Id3-expressing astro-
cytes was compared between young and old mice using a χ2 test. Gene 
modules associated with BBB endothelial cell identity and peripheral 
endothelial cell identity were obtained from the literature22, and their 
expression in individual vascular cells was calculated using the Seurat 
function AddModuleScore.

DE analysis was performed as described above by comparing cells 
from young and old mice after SCI, for cell subtypes at level 4 of the 
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clustering tree (resolution 0.5) and with a false discovery rate of 5%. 
To quantify the heterogeneity of gene expression across cell types, 
we calculated two summary statistics. First, we defined the direction 
consistency as the proportion of cell types in which the sign of the 
log-fold change was the same as the modal sign. For example, if a gene 
was upregulated in eight of ten cell types and downregulated in the 
other two, the direction consistency would be 80%. Second, we defined 
the response heterogeneity as the standard deviation of the log-fold 
change across cell types.

snATAC-seq preprocessing and quality control
Preprocessing and quality control of the ATAC modality within our 
multiome dataset was carried out using CellRanger-ARC and ArchR49. 
Reads were mapped to the reference genome with CellRanger-ARC, 
and arrow files were created from the resulting fragment files. Nuclei 
were first filtered on the basis of the RNA modality as described above, 
and subsequently additional quality control was performed in ArchR. 
We initially ran ArchR with very lenient filtering to determine optimal 
quality control parameters (minimum transcription start site enrich-
ment score 0, minimum fragments per cell 100), and selected optimal 
parameters on the basis of the joint distribution of these parameters. 
Arrow files were subsequently regenerated after filtering nuclei to 
those with a minimum transcription start site enrichment score of 4 
and a minimum of 4,000 fragments per cell. Doublet detection and 
filtering was performed using the ArchR functions addDoubletScores 
and filterDoublets, both with default parameters. These steps afforded 
matrices of 40,526 nuclei that passed quality control in both the RNA 
and ATAC modalities.

To link cell types in the multiome dataset to the cellular taxonomy 
derived from our snRNA-seq atlas, we devised a hierarchical label 
transfer strategy using Symphony50. In brief, we first used Symphony 
to perform automated cell-type assignment in the multiome dataset 
at the highest level of the clustering tree (level 1, resolution 0.01). We 
then used Symphony to perform automated cell-type assignment at 
the second level of the clustering tree (resolution 0.05), considering 
only subtypes of the assigned coarse cell types as potential matches 
for each nucleus. This process was repeated iteratively for each level 
of the clustering tree. We validated the accuracy of this strategy using 
a leave-library-out cross-validation approach within the snRNA-seq 
atlas, in which entire libraries were withheld from the atlas and auto-
mated cell-type assignment was compared to the manual cell-type 
assignment derived from the entire dataset. We found that the hierar-
chical approach improved the accuracy of automated cell-type assign-
ment relative to a non-hierarchical version of the same approach, in 
which all cell subtypes at any given level were considered as potential 
matches, particularly at more granular levels of the clustering tree. For 
cell-type assignment in the multiome dataset, we ran Symphony using 
the hierarchical approach with 100 soft cluster centroids, 100 principal 
components and 20 nearest neighbours, then made further manual 
adjustments to cell-type annotations for a handful of cell subtypes 
that showed discordant marker gene expression.

To further corroborate the accuracy of Symphony in cross-validation, 
we investigated the similarity in gene expression profiles of neuronal 
subpopulations between the snRNA-seq and multiome atlases. 
Pseudobulk gene expression profiles were constructed by summing 
gene-level counts across all neurons of a given level 4 subtype in either 
atlas, and then normalized using the variance-stabilizing transforma-
tion implemented in DESeq2 (ref. 106). Only neuron subtypes identified 
in both atlases were included, and genes that were quantified in only 
one of the two atlases were discarded. We then calculated the Euclidean 
distance between each pair of pseudobulk gene expression profiles 
in the snRNA-seq and multiome atlas, and scaled Euclidean distances 
per multiome subtype to zero mean and unit variance for visualiza-
tion. This analysis showed that the closest neuronal subpopulation for 
each neuron subtype in the multiome atlas in gene expression space 

was its cognate subpopulation in the snRNA-seq atlas, validating the 
automated cell-type annotation approach.

Peak calling in the snATAC-seq dataset was then carried out using 
the default ArchR workflow, including peak calling with MACS2  
(ref. 107) on pseudobulk replicates from each cell type, followed by peak 
merging across cell types using an iterative overlap removal procedure. 
We repeated this process for cell-type definitions at each level of the 
clustering tree and found that peak calling at more granular resolutions 
allowed us to preferentially detect distal regulatory elements. Unless 
otherwise noted, downstream analyses were carried out on the peak 
matrix called with coarse cell-type definitions (level 1, resolution 0.01).

Transcription factor activities
Transcription factor deviations were estimated by chromVAR51, using 
motif sets from the chromVAR package (ENCODE, HOMER and CisBP) 
as well as the 2020 version of JASPAR108. Transcription factor motifs 
associated with cell-type identity were identified using a Wilcoxon 
rank-sum test, as in the Seurat function FindMarkers. Linear mixed 
models were used to identify transcription factor motifs differentially 
active in cells from injured spinal cords, using the ‘lmerTest’ R package 
to optimize the restricted maximum likelihood, and obtain P values 
from the Satterthwaite approximation for degrees of freedom and a 
false discovery rate of 10%.

To identify transcription factors that were up- or downregulated 
across all level 4 neuron subtypes at 7 days postinjury, we performed 
a one-sample t-test on coefficients estimated by the mixed models. To 
identify transcription factors with discordant patterns of up- or down-
regulation at 2 months postinjury, we devised a permutation-based 
statistical approach. Neuron subtype assignments at level 4 of the 
clustering tree were randomized within each experimental condition, 
and differential activity testing was performed using linear mixed 
models in the permuted data. This process was repeated 100 times, 
and the standard deviation of model coefficients was calculated for 
the observed and permuted datasets. The resulting z statistics were 
then converted to P values using a standard normal distribution and 
significantly divergent motifs were identified using a 10% false dis-
covery rate.

To identify transcription factors associated with dysfunction of 
the tripartite barrier after SCI, BBB dysfunction module scores22 were 
first estimated from the RNA modality of the multiome data, as in the 
snRNA-seq atlas. chromVAR deviations in the ATAC modality were then 
correlated to the resulting module scores, using the Pearson correla-
tion and restricting this analysis to vascular cells. Linear mixed models 
were then used to identify motifs that were differentially accessible at 
7 days in level 4 subtypes associated with the tripartite barrier, includ-
ing vascular leptomeningeal cells, capillary endothelial cells, pericytes, 
arachnoid barrier cells, reactive astrocytes and OPCs.

Analyses of differentially active transcription factors in neurons or 
blood–spinal cord barrier cell types were carried out using chromVAR 
deviation matrices derived from peak matrices at the relevant resolu-
tion of the clustering tree, as described above.

Differential accessibility
To identify differentially accessible peaks, we extended the workflow 
for pseudobulk DE analysis in Libra to peak count matrices derived by 
ArchR. Cells of each type were aggregated within replicates to form 
pseudobulks, and then testing for differential accessibility was per-
formed using the likelihood ratio test implemented in DESeq2 (ref. 106). 
The evolutionary conservation of each peak was quantified as the mean 
phyloP conservation score from the 60-way vertebrate dataset54 of all 
bases within the peak. This score is inversely related to the P value of a 
statistical phylogenetic test under a null hypothesis of neutral evolu-
tion; thus, at any given position, a high phyloP score reflects evolution-
ary conservation, whereas a low phyloP score indicates a fast-evolving 
position. The evolutionary conservation of all peaks open within a given 



cell was further summarized by taking the mean phyloP score across 
all accessible peaks in that cell.

Evolutionary divergence in circuit reorganization
The expression of cellular stress response programs in the snRNA-seq 
atlas was estimated by using the Seurat function AddModuleScore 
to summarize the mean expression of genes associated with the GO 
term GO:0033554 (‘cellular response to stress’). The resulting score 
was then correlated with the circuit reorganization score described 
above across all neurons.

Spatial transcriptomics preprocessing and quality control
Following read alignment and count matrix generation with Spac-
eRanger as described above, Seurat77 was used to calculate quality 
control metrics for each spatial barcode, including the number of genes 
detected, number of UMIs and proportion of reads aligned to mitochon-
drial genes. Low-quality barcodes were filtered by removing those with 
fewer than 3,000 or more than 45,000 UMIs; barcodes were not filtered 
on the basis of the proportion of mitochondrial counts. Low-quality 
sections were identified as those with distributions of number of UMIs, 
number of genes expressed or proportion of mitochondrial counts that 
differed markedly from the remainder of the sections in the dataset, 
and were removed. In the 2D spatial dataset, these steps afforded a 
UMI count matrix comprising 33,941 spatial barcodes from nine bio-
logical replicates (three from each experimental condition). In the 3D 
spatial dataset, these steps afforded a UMI count matrix comprising 
37,558 spatial barcodes from three biological replicates (one from each 
experimental condition).

Registration to a common coordinate framework
We aligned all spatial transcriptomics sections into a common coordi-
nate system using a custom image analysis pipeline that includes pre-
processing, registration and combination of histological images from 
different sections, aspects of which have been previously described8. 
In brief, we implemented image preprocessing in Fiji, and registration 
procedures in R, using the image analysis package ‘imager’. Segmenta-
tion of the histological sections and associated spatial barcodes from 
background was achieved using a custom macro in Fiji. Segmented sec-
tions were then aligned using imager. Image registration was performed 
manually using the tissue structure to guide registration, as captured 
by (1) histological images, (2) quality control statistics (for example, 
the percentage of mitochondrial counts), (3) marker genes for coarse 
cell types and dorsoventral or rostrocaudal transcription factors (for 
example, Ebf1, Esrrg and Hox genes) and (4) unsupervised clustering 
of the spatial barcodes, as implemented within Seurat.

Visualization
Quality control metrics and marker gene expression were smoothed 
before visualization on the 2D spinal cord using locally weighted regres-
sion, as implemented in the RCTD package109. Visualization of the 3D 
spinal cord was achieved with Imaris (Bitplane, v.9.0.0). In brief, the 
3D spatial transcriptomics data was binned along the z dimension into 
slices of 10 μm. Within each slice, quantitative values (quality control 
metrics, gene expression, gene module scores and chromVAR devia-
tions) were smoothed using 3D locally weighted regression. When 
several quantitative values were assigned to a single spatial coordinate 
(for example, when performing spatial prioritization on snRNA-seq 
barcodes embedded by means of Tangram), the mean value at each 
coordinate was assigned, with the exception of the expression of indi-
vidual genes for which the maximum value at each coordinate was 
assigned instead. Each barcode was then assigned a size of 3 pixels, 
and the resulting slices were exported as 16 bit greyscale TIFF files 
using imager for import into Imaris. Separate reconstructions of the 3D 
spinal cord volume were performed for each experimental condition 
in the spatiotemporal atlas (that is, uninjured, 7 days and 2 months).

DE
To identify genes differentially expressed between regions in the 
injured spinal cord within the 2D spatial dataset, we extended the 
workflow for pseudobulk DE analysis in Libra to spatial count matri-
ces derived by SpaceRanger. Cells from each region were aggregated 
within replicates to form pseudobulks, and then testing for DE was 
performed using the likelihood ratio test implemented in edgeR105. 
DE analysis was performed separately for spinal cord regions at 7 days 
and 2 months postinjury. DE gene expression was visualized on the 2D 
spinal cord using 2D locally weighted regression, as implemented in 
the RCTD package109.

Cell-type deconvolution
To integrate our snRNA-seq atlas with the 2- and 3D spatial atlases, we 
used RCTD109 to deconvolve spatial barcodes into a mixture of one or 
more cell types, while accounting for technical differences between 
single-nucleus and spatial transcriptomes. RCTD was run with doublet 
mode disabled, allowing each barcode to potentially contain more 
than two cell types, separately for cell-type definitions at level 1 and 
2 of the clustering tree. We recovered smoothed patterns of cell-type 
abundance by 2D locally weighted regression of deconvolution weights, 
as described by the authors of RCTD109. Separately, a single cell type was 
assigned to each spatial barcode by taking the maximum deconvolution 
weight assigned by RCTD for that barcode. For cell-type definitions at 
level 2 of the clustering tree, only subtypes of the assigned level 1 cell 
types were considered as potential matches for each spatial barcode.

Spatial prioritization with Magellan
To characterize the spatial response to SCI in an unbiased manner, we 
used a machine-learning method spatial prioritization that we recently 
developed, named Magellan8. Magellan builds on the concept of tran-
scriptional separability that provides a basis for cell-type prioritiza-
tion in Augur, as described above. However, in spatial transcriptomics 
data, the analytical level of interest is not necessarily a cell type, but 
rather a coordinate within a 2- or 3D tissue. To approach the data at this 
level, we sought to evaluate the transcriptional separability between 
barcodes from two experimental conditions at each point within a 
common coordinate system. We reasoned that we could achieve this 
by evaluating the separability of barcodes from each condition within 
small, overlapping tiles, layered across the spatial coordinate system. 
Briefly, for each barcode in a spatial transcriptomics dataset, Magellan 
selects the k nearest neighbours from each experimental condition 
within common coordinate space, where k is set to 20 by default. Then, 
Magellan withholds the experimental condition labels for a proportion 
of these neighbours, and trains a random forest classifier to predict 
the experimental condition given the remaining barcodes as input. 
The accuracy of these predictions is evaluated in the withheld bar-
codes, and the process is repeated in threefold cross-validation. As in 
Augur, the accuracy is quantified using the AUC. The cross-validation 
is repeated several times (by default, 50 times) in order to converge 
at a robust estimate of the AUC. The entire procedure is repeated for 
each barcode in the dataset, providing a spatial map of the AUC over 
the coordinate system of the spatial transcriptomes.

Magellan was used to perform spatial prioritization in the 2D spa-
tial dataset by comparing registered spatial transcriptomes from 
each pair of experimental conditions (uninjured, 7 days, 2 months). 
To visualize the intensity of the perturbation response, the spatial 
AUC was smoothed by 2D locally weighted regression, as described by 
the authors of RCTD109. In addition, we performed a one-dimensional 
locally weighted regression to visualize the intensity of the perturbation 
response along the rostrocaudal axis of the spinal cord.

To more carefully dissect the transcriptional basis of the perturbation 
response detected by Magellan, we tested for correlation between gene 
expression and the AUC of spatial prioritization. In brief, we filtered 

http://amigo.geneontology.org/amigo/term/GO:0033554
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the UMI count matrix within each comparison to include only genes 
detected in at least 100 spatial barcodes, and then computed Pearson 
correlations between scaled and log-normalized gene expression vec-
tors and the AUCs returned for each barcode by Magellan. We further 
identified genes that were differentially correlated with the AUCs at 
7 days and 2 months by testing for differential correlations using the 
Fisher z transformation, adapting code from the DGCA R package110. 
We extended this concept by computing module scores for GO terms 
for each spatial barcode with the Seurat function AddModuleScore, 
as described above, and testing for significant correlations between 
GO module scores and the AUCs returned by Magellan. As in the DE 
analysis, the expression of genes or GO modules correlated or anticor-
related with the AUC of spatial prioritization was visualized on the 2D 
spinal cord using 2D locally weighted regression, as implemented in 
the RCTD package109.

Integration of the Tabulae Paralytica
To integrate all four Tabulae into a single framework, we leveraged 
Tangram111 to to embed single-nucleus transcriptomes and epigenomes 
onto the common coordinate system established by our 4D atlas of 
the mouse spinal cord. Alignment of snRNA-seq barcodes into the 
spatiotemporal atlas was performed separately for each experimental 
condition in the snRNA-seq and multiome atlases, using the most simi-
lar condition in the spatiotemporal atlas as a reference (for example, 
aligning cells from 14 days to the spatiotemporal atlas at 7 days and 
cells from 1 month to the spatiotemporal atlas at 2 months). Tangram 
was run with the top 500 highly variable genes for each cell type and 
using cell-type definitions at level 4 of the clustering tree.

This procedure assigned x, y and z coordinates to each nuclei in the 
snRNA-seq and multiome atlases. We then used Magellan to perform 
3D spatial prioritization on the spatialized single-nucleus data, using 
the coordinates assigned by Tangram for each barcode. Spatialized 
cells from each injury severity were compared to those from uninjured 
mice. Separately, spatialized cells from old mice were compared to 
those from injured young mice at the same time point. Moreover, we 
again tested for correlation between gene expression in spatialized 
cells and the AUC of 3D spatial prioritization.

Gene modules associated with BBB endothelial cell identity and 
peripheral endothelial cell identity were obtained from the literature22, 
and their expression in spatial barcodes was calculated using the Seurat 
function AddModuleScore. Similarly, we used the average expression 
of genes associated with the GO term GO:0031175 (neural projection 
development) to construct a circuit reorganization score, as described 
above for the snRNA-seq atlas, and visualized the expression of this 
score in spatialized neurons from the snRNA-seq atlas. Last, to summa-
rize the expression of the conserved early response module in neurons, 
we selected the top 25 genes that were upregulated in the greatest 
number of level 4 neuron subtypes and with the greatest mean log-fold 
change at 1 day postinjury, and used the Seurat function AddModule-
Score to summarize the expression of this gene module.

Transcription factor accessibility at 7 days was visualized on the 4D 
atlas by first embedding individual nuclei from multiome atlas onto the 
3D coordinate system of the spinal cord, and then visualizing chromVAR 
deviations from linked epigenomes for each nucleus.

Statistics, power calculations, group sizes, reproducibility and 
visualization
Statistical evaluations of repeated measures were conducted by one-way 
analysis of variance with post hoc independent pairwise analysis as per 
Tukey’s honestly significant difference test. For all photomicrographs of 
histological tissue, staining experiments were repeated independently 
with tissue from at least four, and in most cases six, different animals 
with similar results. Throughout the paper, the box plots show the 
median (horizontal line), interquartile range (hinges) and smallest and 
largest values no more than 1.5 times the interquartile range (whiskers).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Sequencing data have been deposited to the Gene Expression Omnibus 
(GSE234774, snRNA-seq and spatial transcriptomics, and GSE230765, 
multiome). Source data are provided with this paper.

Code availability
Augur, Libra and Magellan are available from GitHub (https://github.
com/neurorestore/Augur, https://github.com/neurorestore/Libra and 
https://github.com/neurorestore/Magellan).
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Extended Data Fig. 1 | Clustering tree of 180 cell types and subtypes in the 
snRNA-seq atlas. a, Clustering tree of the mouse spinal cord, revealing the 
hierarchical relationships between spinal cord cell types across levels 1 to 3 in 
the taxonomy, with cell types at level 3 highlighted. Text at the top of the tree 

shows the clades of the clustering tree corresponding to the major cell types  
of the mouse spinal cord (i.e., level 1 in the taxonomy). b, As in a, but showing 
level 4 in the taxonomy. c, As in a, but showing level 5 in the taxonomy.
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Extended Data Fig. 2 | Neuronal susceptibility and resilience to SCI.  
a, Boxplot highlighting the proportion of neurons within individual libraries 
from the severity experiment, as compared to other major cell types. b, Boxplot 
showing the log2-odds ratio comparing the proportions of neurons from each 
level 4 subtype between the uninjured spinal cord, for all comparisons involving 
the injured spinal cord at 7 days post-injury. Cerebrospinal fluid-contacting 
neurons are the lone subpopulation to exhibit statistically significant resilience 
following SCI. **, p < 0.01; ***, p < 0.001. c, Scatterplot highlighting an individual 
comparison from b, showing the proportions of neurons from each level  
4 subtype in the uninjured spinal cord, x-axis, and 7 days after a complete injury, 
y-axis. Color shows the log2-odds ratio. Cerebrospinal fluid-contacting neurons 

are highlighted. d, Proportion, y-axis, and absolute number, point size, of 
cerebrospinal fluid-contacting neurons recovered from each experimental 
condition. Dotted line shows the proportion of cerebrospinal fluid-contacting 
neurons in the uninjured spinal cord. e, Representative histological 
photomicrographs show injured spinal cords across injury severities after 
staining for NeuN and PKD1L2, a marker of cerebrospinal fluid-contacting 
neurons. f, Quantification of histological data demonstrating increasing 
proportions of cerebrospinal fluid-contacting neurons across injury severities. 
g, Volcano plot showing differentially expressed genes in cerebrospinal fluid-
contacting neurons following spinal cord injury, as compared to other neuron 
subtypes.
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Extended Data Fig. 3 | Conserved and divergent neuronal responses to SCI. 
a, Heatmap showing fold changes for all genes differentially expressed after 
SCI in at least one level 4 neuron subtype at 1 day, top, and 1 month, bottom, 
after injury. Patterns of differential expression are broadly conserved at 1 day, 
but more subtype-specific at 1 month. b, Heatmap showing fold changes for 
selected genes with broadly conserved patterns of differential expression 
across level 4 neuron subtypes at 1 day post-injury. c, Heatmap showing 
coefficients estimated by linear mixed models within each neuron subtype for 
up- or downregulation of the early-conserved neuronal module over the injury 
timecourse. d, Heatmap showing coefficients estimated by linear mixed 
models within each neuron subtype for selected GO term modules with broadly 
conserved patterns of up- or downregulation across level 4 neuron subtypes  
at 1 day post-injury. e, Dot plot showing median expression of the circuit 
reorganization module in each level 4 neuron subtype across timepoints.  
Point color and size both show median expression of the circuit reorganization 
module. f, Boxplots showing expression of the axon development, left, and 
dendrite development, right modules in Vsx2-expressing neurons across 
timepoints. g, Boxplot showing expression of the circuit reorganization 
module in each level 4 neuron subtype within the uninjured spinal cord.  
Vsx2-expressing neurons display the highest expression of the circuit 
reorganization module in the uninjured spinal cord. h, Dendrogram showing 

expression of the growth factor Gdnf across levels 1 to 4 of the neuron 
taxonomy. Point color shows mean expression in each neuron subtype, while 
point size reflects the proportion of neurons of that subtype with detectable 
expression. i, Scatterplots comparing basal expression of the circuit 
reorganization module in the uninjured spinal cord, x-axis, with the SCI-
induced upregulation of this module at each timepoint after injury, y-axis, for 
each level 4 neuron subtype. Inset text shows the Pearson correlation. Basal 
and induced expression of the circuit reorganization module is maximally 
correlated at 1 month post-injury, coinciding with the temporal window of 
opportunity for natural recovery after SCI. j, Timeline of Vsx2ON neuron 
diphtheria toxin ablation experiments. Two weeks before complete crush SCI, 
animals received an injection of AAVs expressing DTR. At eight weeks, animals 
received daily injections of diphtheria toxin for 7 days. Kinematics were then 
recorded and tissue was collected for evaluation. k, Histological verification of 
Vsx2ON neuron ablation in the lower thoracic region. Images show loss of Vsx2ON 
neurons in the thoracic spinal cord, above and below the level of the crush SCI. 
Bar graph shows the number of Vsx2ON neurons found in each animal (n = 4  
mice per group, independent samples two-tailed t-test, t = 11.7, p = 2.4 × 10–5).  
l, Locomotor performance in the Vsx2ON ablation experiment, as quantified in 
Supplementary Fig. 3 (n > 10 gait cycles per mouse, n = 4 mice per group).
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Extended Data Fig. 4 | Neurons remain differentiated after SCI. a, Volcano 
plots showing differential expression for all level 4 neuron subtypes 
simultaneously across timepoints. Enlarged points represent the key marker 
genes for each neuron subtype shown in Supplementary Fig. 11a. Marker genes 
shown in grey show no evidence of differential expression after SCI in their 
respective neuron subtype. b, Differential expression of key marker genes for 
level 4 neuron subtypes across timepoints and injury severities (log2-fold 
change, y-axis, and false discovery rate, point color). Timepoints or severities 
for which key marker genes show evidence of statistically significant differential 
expression, compared to uninjured neurons, are plotted with light grey 
backgrounds. Genes without statistical evidence of differential expression 

(i.e., FDR greater than 5%) are shown as white points. n.d., genes that were not 
detectably expressed and could not be subjected to DE analysis. c, Volcano  
plot showing differential expression for averaged gene expression modules 
comprising the top 5, top 10, or top 50 marker genes identified for each  
level 4 neuron subtype by unbiased comparisons with all other neurons, 
simultaneously across all timepoints. The vast majority of marker gene 
modules show no evidence of downregulation after SCI in their respective 
neuron subtype. d, As in c, but showing differential expression for averaged 
gene expression modules comprising the top 50 marker genes for each  
level 4 neuron subtype, shown separately for each condition in the timecourse 
experiment.
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Extended Data Fig. 5 | Failure of tripartite barrier formation in old mice.  
a, Sankey diagram showing the proportions of immune cell subtypes in young 
and old mice at seven days post-injury. b, Volcano plot showing the statistical 
significance of changes in immune cell subtype proportions between young 
and old mice. c, Composite tiled scans and confocal insets of albumin and GFAP 
in horizontal sections from representative old and young mice at two weeks 
after SCI. d, Line graph demonstrates albumin intensity at specific distances 
rostral and caudal to lesion centers. Bottom right, bar graph indicates the area 
under the curve (independent samples two-tailed t-test, n = 5 per group, t = –3.47, 
p = 0.022). e, Dendrogram showing cell type prioritizations assigned by Augur 
across the cellular taxonomy of the spinal cord in comparisons of young and 
old mice at seven days post-injury. The eight level 5 cell types with the highest 
AUCs are annotated. f, Sankey diagram showing the proportions of vascular 
cell subtypes in young and old mice at seven days post-injury. g, Sankey diagram 
showing the proportions of astroependymal cells expressing Id3 in young and 

old mice at seven days post-injury (p = 1.9 × 10–3, χ2 test). h, Average expression 
of the BBB identity module, left, and the peripheral vascular identity module, 
right, in capillary endothelial cells from young and old mice at seven days  
post-injury. i, Heatmap showing log-fold changes for all genes differentially 
expressed in at least one level 4 cell type in comparisons of injured versus 
uninjured mice, top, and old versus young mice, bottom. j, Heterogeneity of 
differential expression in comparisons of injured versus uninjured mice, top, 
and old versus young mice, bottom. Each point shows a gene differentially 
expressed in at least one level 4 cell type. The x-axis shows the average log2-fold 
change across all cell types; the y-axis shows the standard deviation of the  
log2-fold change across cell types (“response heterogeneity”); point size reflects 
the total number of cell types in which the gene is differentially expressed;  
and point color reflects the proportion of cell types in which the sign of the 
log2-fold change was the same as the modal sign (“direction consistency”).



H
2−Aa

H
2−Ab1

C
lec12a

C
lec4a2

C
1s1

C
1ra

� Rostral

Fabp7

2m

U
cm

a
Prelp

Id4
Sctr

R
nase4

Scrt1
Vsnl1

H
tr1b

Slc6a5
H

rh3
N

ptx1

Caudal �

min

max
Expression

C
ol6a3

C
ol4a2

Pf4
M

m
p2

M
m

p14
C

d74

� Rostral

Tuba1c

7d

Arpc1b
Fxyd5

Id3
C

d5l
C

d63

Kcnc2
Slc12a5

N
rsn1

Bend6
C

lvs2
Lin7b

Caudal �

min

max
Expression

7d
2m

� Rostral Caudal �

R
�

�
L

0

3790
# DE genes

7d
2m

� Rostral Caudal �

R
�

�
L

Compartment
>1 mm rostral
1 mm rostral
500 um rostral
250 um rostral
Lesion
250 um caudal
500 um caudal
1 mm caudal
>1 mm caudal

a

b

c

Gpnmb
Cd5l

Pf4

0
10
20
30
40
50

�
lo

g 1
0� P
�

−10 0 10

905 DE genes
>1 mm rostral

Gpnmb

Cd5l

Atp6v0d2

−10 0 10

719 DE genes
1 mm rostral

Atp6v0d2

Pf4

−10 0 10

2 DE genes
500 um rostral

Nefh

Sh3bgr
Kcnc3

−10 0 10

721 DE genes
250 um rostral

Kcnc3 Slc12a5

Calb2

−10 0 10
log2�FC�

2457 DE genes
Lesion

Nrn1
Hcrtr2

−10 0 10

720 DE genes
250 um caudal

Col7a1

Postn Col6a3

−10 0 10

38 DE genes
500 um caudal

Cd5l

Gpnmb

Acp5

−10 0 10

797 DE genes
1 mm caudal

Cd5l

Gpnmb

Ms4a7

−10 0 10

480 DE genes
>1 mm caudal

Igha

H2−AaSteap4

0

10

20

30

40

�
lo

g 1
0� P
�

−10 0 10

587 DE genes
>1 mm rostral

Igha

H2−Aa
Kng2

−10 0 10

633 DE genes
1 mm rostral

Mgp
Clec12a

H2−Aa

−10 0 10

5 DE genes
500 um rostral

Vip

Klk13
Sox14

−10 0 10

335 DE genes
250 um rostral

H2−AaClec12a

Slc6a5

−10 0 10

log2�FC�

2870 DE genes
Lesion

Slc32a1

Lamp5 Ckmt1

−10 0 10

502 DE genes
250 um caudal

Iglc3

Mmp12

H2−Aa

−10 0 10

3 DE genes
500 um caudal

Igha

H2−Aa

H2−Ab1

−10 0 10

362 DE genes
1 mm caudal

Igha

H2−Aa

H2−Ab1

−10 0 10

319 DE genes
>1 mm caudal

2m

>1 mm caudal
1 mm caudal

500 um caudal
250 um caudal

Lesion
250 um rostral
500 um rostral

1 mm rostral
>1 mm rostral

−5.2
5.2

log2�FC�

7d

>1 mm caudal
1 mm caudal

500 um caudal
250 um caudal

Lesion
250 um rostral
500 um rostral

1 mm rostral
>1 mm rostral

−5.1
5.1

log2�FC�

>1 m
m

rostral
1 m

m
rostral

500 um
rostral

250 um
rostral

Lesion
250 um
caudal

500 um
caudal

1 m
m

caudal
>1 m

m
caudal

Slc35g2
Serp2
Clvs2

Elmod1
Slc12a5

Scg2
Vgf

Hsd11b1
Nrsn1

Gabrg2

Gbp5
Cxcl10

Isg15
Ncan
Ifi205

Bmp1
Alox5

Cd109
Cnn1
Cdsn

Pf4
Col6a3

Tmem273
Col8a1
Col4a2

Rexo5
Trib1

Man2b2
Lyzl4

Scgb1a1

A2m
Ucma

Il1f9
Slurp1
Etnppl

Lhx3
Hoxd9

Sv2b
Kcnc3

Sh3bgr

H2−Q2
Hoxa10

Abcb9
Rgs6

Ppp1r1b

−5.1

5.1
log2�FC�

>1
 m

m ro
str

al

1 m
m ro

str
al

50
0 u

m ro
str

al

25
0 u

m ro
str

al

Le
sio

n

25
0 u

m ca
ud

al

50
0 u

m ca
ud

al

1 m
m ca

ud
al

>1
 m

m ca
ud

al

>1
 m

m ro
str

al

1 m
m ro

str
al

50
0 u

m ro
str

al

25
0 u

m ro
str

al

Le
sio

n

25
0 u

m ca
ud

al

50
0 u

m ca
ud

al

1 m
m ca

ud
al

>1
 m

m ca
ud

al

>1 m
m

rostral
1 m

m
rostral

500 um
rostral

250 um
rostral

Lesion
250 um
caudal

500 um
caudal

1 m
m

caudal
>1 m

m
caudal

Foxn4
Hoxd9
Htr1b
Scrt1
Vsnl1

Hoxa10
Tfap2b
Slc6a5

Glra2
Nptx1

Platr23
Vmn1r54

Zfp541
Chrdl2
Defb1

Klk13
Pi16

Zfp981
Smagp

Tnfrsf11a

Kng2
H2−Ab1
Clec12a

H2−Aa
Pla1a

Cybrd1
Ucma

Id4
Fabp7

Lcat

Lncbate10
Fxyd4
Nupl1

Bpifb9b
Scn10a

Vip
Trnp1

Fam57b
Sult4a1

Peli3

Epx
Hsd11b1

Sv2c
Grin2c
Ppm1e

−5.2

5.2
log2�FC�

d

e

f g

h

i

Extended Data Fig. 6 | Shared and distinct programs of gene expression 
across lesion compartments. a, Left, total number of differentially expressed 
genes detected within each lesion compartment at 7 days and 2 months after 
SCI. Right, legend showing the position of each lesion compartment, as in 
Fig. 6c. b-c, Volcano plots showing differentially expressed genes for all lesion 
compartments at 7 days, b, and 2 months, c. The top three genes per lesion 
compartment, as ranked by the product of the log2-fold change and the –log10 

p-value, are annotated. d-e, Heatmap showing log2-fold changes for all genes 
differentially expressed in at least one lesion compartment at 7 days, d, and  
2 months, e. f-g, Heatmap showing log2-fold changes for the top five genes 
differentially expressed in each lesion compartment at 7 days, f, and 2 months, g. 
h-i, Visualization of selected differentially expressed genes specific to individual 
lesion compartments at 7 days, h, and 2 months, i, on the two- dimensional 
coordinate system of the injured spinal cord.
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Extended Data Fig. 7 | Cell type deconvolution of the 2D spatial atlas.  
a, Major cell types assigned to each spatial barcode, visualized for each 
experimental condition on the two-dimensional coordinate system of the 
injured spinal cord. b, Sankey diagram showing the cellular composition of 
each lesion compartment at 7 days, for major (level 1) cell types. c, Sankey 
diagram showing the cellular composition of each lesion compartment at  
2 months, for level 1 cell types. d, Sankey diagram showing the cellular 
composition of each lesion compartment at 2 months, for level 2 cell types.  

e, Sankey diagram showing the evolution of the cellular composition of the entire 
injured spinal cord between 7 days and 2 months, for level 1 cell types. f, Sankey 
diagram showing the evolution of the cellular composition of the entire injured 
spinal cord between 7 days and 2 months, for level 2 cell types. g, Visualization 
of the deconvolution weights assigned by RCTD for selected level 2 cell types  
at each timepoint, on the two-dimensional coordinate system of the injured 
spinal cord.
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Extended Data Fig. 8 | Molecular basis of spatial prioritization at the gene 
level. a-c, Volcano plots showing correlations between the AUCs assigned by 
Magellan at each spatial barcode and transcriptome-wide gene expression 
across the same spatial barcodes (a, 7 days versus uninjured; b, 2 months versus 
uninjured; c, 7 days versus 2 months). Inset pie charts show the proportions of 
all tested genes that are significantly correlated with the spatial prioritizations. 
d, Heatmap showing Pearson correlations between spatial prioritizations and 

gene expression for each pairwise comparison of experimental conditions, for 
the top 40 most recurrently correlated genes across all comparisons. e, Heatmap 
showing Pearson correlations between spatial prioritizations and gene 
expression for each pairwise comparison of experimental conditions, for the 
top 40 most variably correlated genes across all comparisons. f, Visualization 
of selected genes prioritized by their correlation to spatial prioritizations on 
the two-dimensional coordinate system of the injured spinal cord.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | A rejuvenative gene therapy reestablishes the 
tripartite barrier to restore walking. a, Left, experimental design of a gene 
therapy intervention to promote the formation of the tripartite barrier, 
reproduced from Fig. 8a. Right, a second chronophotography series showing 
walking in old mice without (top) and with (bottom) a gene therapy intervention 
to promote the formation of the tripartite barrier. b, Composite tiled scans of 
GFAP and CD45 in horizontal sections from representative old and treated mice. 
c, Horizontal sections from representative old and treated mice identifying a 
restoration of Sox9ONId3ON cells in the astrocyte border region in treated mice. 
d, Composite tiled scans and confocal insets of albumin and GFAP in horizontal 
sections from representative old and treated mice after SCI. e, Line graph 

demonstrates albumin intensity at specific distances rostral and caudal to lesion 
centers. Bottom right, bar graph indicates the area under the curve (independent 
samples two-tailed t-test, n = 5 per group, t = 4.07, p = 0.0099). f, Locomotor 
performance in the gene therapy experiment, as quantified in Supplementary 
Fig. 3 (n > 10 gait cycles per mouse, (n = 5 mice per group; Tukey’s honestly 
significant difference test). *, p < 0.05; **, p < 0.01; ***, p < 0.001. g, Left, schematic 
overview of the classification pipeline using high-resolution kinematics data 
from young and old mice. Right, experimental conditions assigned to individual 
steps in old mice that received gene therapy by a machine-learning model trained 
on kinematics data from untreated animals.
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